INTRODUCTION

WM8750 contains a headphone detect feature. This application note explains the purpose and characteristics of the output switch-over delay in the headphone detect.

HEADPHONE DETECT

The headphone detect can be used to automatically disable the speaker output and enable the headphone output, when a headphone plug is inserted into a headphone connector. The RINPUT3/HPDETECT pin can be used as HPDETECT. The threshold levels are 0.3 x AVDD (low) and 0.7 x AVDD (high). Figure 1 presents an example of headphone detection circuitry. Because of the internal connections of WM8750 a 33kΩ pull-up resistor is needed to ensure the correct operation of headphone detect circuitry. The 33kΩ pull-up resistor causes slightly higher current consumption than normally used 47kΩ.

Figure 1 Headphone Detect with Ground Switch

The headphone detect is controlled with two WM8750 register bits: HPSWEN and HPSWPOL. HPSWEN enables the feature (HPDETECT in use) and HPSWPOL changes the HPDETECT polarity. Table 1 explains the headphone detect configuration.

<table>
<thead>
<tr>
<th>HPSWEN</th>
<th>HPSWPOL</th>
<th>HPDETECT (PIN23)</th>
<th>L/ROUT1 (reg. 26)</th>
<th>L/ROUT2 (reg. 26)</th>
<th>Headphone enabled</th>
<th>Speaker enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Table 2 Headphone Detect Configuration
SWITCH-OVER DELAY

When a headphone plug is inserted into the headphone connector as shown in Figure 1, the HPDETECT voltage is unstable for some time. The instability, or bounce, is caused by the spring contacts of the headphone connector and variability of insertion time. If the CODEC changed the output every time HPDETECT met the threshold levels, the output would be changed several times during one insertion. This is unacceptable.

To prevent the bounce effect hysteresis is needed. This is achieved by adding a delay before switching output. The switch-over delay (SD) is implemented with a digital counter. The counter starts, when HPDETECT initially meets the threshold limit and stops after a defined time. Figure 2 shows the HPDETECT voltage bounce and the switch-over delay after headphone insertion.

![Figure 2 HPDETECT Voltage Bounce and Switch-over Delay after Headphone Insertion](image)

The switch-over delay counter is clocked by MCLK. The switch-over delay therefore depends on MCLK frequency. Note: If MCLK input is not provided WM8750 headphone detect cannot be used.

The switch-over delay can be calculated with the following formulas:

Minimum Switch-over Delay (s): \[SD_{\text{MIN}} = 2 \times (2^{21} + f_{\text{MCLK}}) \]

Maximum Switch-over Delay (s): \[SD_{\text{MAX}} = 3 \times (2^{21} + f_{\text{MCLK}}) \]

The switch-over delays with commonly used MCLK frequencies are listed in Table 2.

<table>
<thead>
<tr>
<th>MCLK</th>
<th>SD(_{\text{MIN}})</th>
<th>SD(_{\text{MAX}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.048MHz</td>
<td>2.05s</td>
<td>3.07s</td>
</tr>
<tr>
<td>4.096MHz</td>
<td>1.02s</td>
<td>1.54s</td>
</tr>
<tr>
<td>8.192MHz</td>
<td>0.51s</td>
<td>0.77s</td>
</tr>
<tr>
<td>11.2896MHz</td>
<td>0.37s</td>
<td>0.56s</td>
</tr>
<tr>
<td>12.288MHz</td>
<td>0.34s</td>
<td>0.51s</td>
</tr>
</tbody>
</table>

Table 2 Switch-over Delays with Different MCLK Frequencies

CONCLUSION

The switch-over delay ensures correct operation of the headphone detect circuit and it is always enabled when the headphone detection is used. The length of switch-over delay depends on the MCLK frequency.
APPLICATION SUPPORT

If you require more information or require technical support, please contact the Wolfson Microelectronics Applications group through the following channels:

Email: apps@wolfsonmicro.com
Telephone Apps: (+44) 131 272 7070
Fax: (+44) 131 272 7001
Mail: Applications Engineering at the address on the last page

or contact your local Wolfson representative.

Additional information may be made available on our web site at:

http://www.wolfsonmicro.com
IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson’s terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer’s own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party’s products or services does not constitute Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc
Westfield House
26 Westfield Road
EDINBURGH
EH11 2QB
United Kingdom

Tel :: +44 (0)131-272-7000
Fax :: +44 (0)131-272-7001
Email:: apps@wolfsonmicro.com