CALIBRATING THE CS5460A

1. Is Calibration Required?
The CS5460A does not have to be calibrated. After CS5460A is powered on and then reset, the device is functional. This is called the active state. Upon receiving a ‘Start Conversions’ command, CS5460A can perform measurements without being calibrated. But the CS5460A’s output is always affected by the values inside the various calibration registers. If no calibrations are executed by the user, then these registers will contain the default values (Gains = 1.0, DC Offsets = 0.0, AC Offsets = 0). Although the CS5460A can be used without performing an offset or gain calibration, the guaranteed ranges for accuracy of ±0.1% of reading (with respect to a known voltage and current level) will not be valid until a gain/offset calibration is performed. Although the CS5460A will always exhibit the linearity+variation tolerances that are specified in Table 1, the exact reference voltage and current levels to which this linearity is referenced will vary from sample to sample. If no calibration is performed, these voltage/current reference levels exist based on the full-scale DC input voltage limits for each channel, which are approximately equal to the voltages specified in the “Max Input” row of Table 1. But these voltages will have a variation from part to part. Any given CS5460A sample must be calibrated to insure the guaranteed accuracy = (linearity+variation) abilities of the sample, with respect to a specific input voltage signal levels at the voltage/current channel inputs.

As an example, suppose the user runs the DC gain calibration sequence on the current channel (assume PGA gain set for “10x”) using a calibration signal level across the IIN+/IIN- pins of 187.5 mV (DC). After this calibration is performed, the full-scale digital output code (0x7FFFFF in the Instan-
taneous Current Register) will be obtained whenever the input voltage across the IIN+ and IIN- pins is 187.5 mV (DC). Note that this level is ~75% of the (typical) maximum available input voltage range [i.e., ±250 mV DC.] In this situation, the current channel input ranges for which ±0.1% linearity + variation are guaranteed will be reduced to between 0.5 mV (DC) and 187.5 mV (DC), as opposed to what is specified in Table 1 [which would translate into a voltage range between 0.5 mV (DC) and 250 mV (DC)].

Also note that using gain calibration signal levels which cause the CS5460A to set the internal gain registers to a value that is less than unity will effectively decrease the guaranteed “±0.1% of reading” linearity+variation range (and therefore the accuracy range) of the RMS calculation results and the overall energy results. This will occur whenever a DC gain calibration is performed (on either channel) of a CS5460A sample while applying a DC signal whose value is less than the individual sample's inherent maximum differential DC input voltage level. This will also occur whenever an AC gain calibration is performed (on either channel) using an AC signal whose RMS value is less than 60% of the sample’s inherent maximum AC input voltage levels.

Finally, remember that the ±0.1% (of reading) accuracy guarantee is made with the assumption that the device has been calibrated with MCLK = 4.096 MHz, K = 1, and N = 4000. If MCLK/K becomes too small, or if N is set too low (or a combination of both), then the CS5460A may not exhibit ±0.1% linearity + variation.

1.1 Order of Calibration Sequences

Should offset calibrations be performed before gain calibrations? Or vice-versa? This section summarizes the recommended order of calibration.

1. If the user intends to measure any DC content that may be present in the voltage/current and power/energy signals, then the DC offset calibration sequences should be run (for both channels) before any other calibration sequences. However if the user intends to remove the DC content present in either the voltage or current signals (by turning on the voltage channel HPF option and/or the current channel HPF option--in the Status Register) then DC offset calibration does not need to be executed for that channel. Note that if either the voltage HPF or current HPF options are turned on, then any DC component that may be present in the power/energy signals will be removed from the CS5460A's power/energy results.

2. If the user intends to set the energy registration accuracy to within ±0.1% (with respect to reference calibration levels on the voltage/current inputs) then the user should next execute the gain calibrations for the voltage/current channels. The user can execute either the AC or DC gain calibration sequences (for each channel).

3. Finally, the user should (if desired) run the AC offset calibration sequences for the voltage and current channels. Simply ground the “+” and “-” inputs of both channels and execute the AC offset calibration sequence.

Note that technically, by following the order of calibrations as suggested above, if DC offset calibration is performed for a given channel, and afterwards a gain calibration is performed on the channel, then the DC offset register value for the channel should be scaled by a factor equal to the respective channel's new gain register value. For example, suppose that execution of DC offset calibration for the voltage channel results in a value of 0x0001AC = 0.0000510(d) in the Voltage Channel DC Offset Register (and we assume that the value in the Voltage Channel Gain Register was at its default value of 1.000... during execution of this DC offset calibration). Then if AC or DC gain calibration is executed for the voltage channel such that the Voltage Channel Gain Register is changed to 0x4020A3(h) = 1.0019920(d), then the user may want to modify the value in the Voltage Channel

<table>
<thead>
<tr>
<th>Range (% of FS)</th>
<th>Energy</th>
<th>Vrms</th>
<th>Irms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% - 100%</td>
<td>50% - 100%</td>
<td>0.2% - 100%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max. Differential Input</th>
<th>V-channel: ±250 mV</th>
<th>I-channel: ±250 mV 10x ±50 mV 50x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>0.1% of reading</td>
<td>0.1% of reading</td>
</tr>
</tbody>
</table>

Table 1. Available range of ±0.1% output linearity, with default settings in the gain/offset registers.
DC Offset Register to 0x0001AD(h) = 0.0000511(d), which is (approximately) equal to 1.0019920*0.0000510.

1.2 Calibration Tips
To minimize digital noise, the user should wait for each calibration step to be completed before reading or writing to the serial port. After a calibration is performed, the offset and gain register contents can be read and stored externally by the system microcontroller and recorded in memory. The same calibration words can be uploaded into the offset and gain registers of the converters when power is first applied to the system, or when the gain range on the current channel is changed.