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Chapter 1

1Introduction

 1.1 Welcome to the Cirrus C-Compiler (CCC)
The Cirrus® C Compiler (CCC) compiles C source files to produce assembler code that is 
able to run on the Cirrus DSP platforms such as the CS4953xx, CS4970x4, CS485xx, 
CS47xxx, and the CS498xx multi-core DSPs. 

The CCC is part of the Cirrus Logic Integrated Development Environment (CLIDE) that is 
available to Cirrus Logic customers to enable them to develop their own custom audio 
algorithms to run on Cirrus Logic DSPs. CLIDE receives input from DSP Composer and 
provides output to DSP Composer. The Cirrus Device Manager (CDM) must be running to 
use the CLIDE tool set. When the SDK for the Cirrus DSP used in the customer’s design is 
launched, the CDM should also be automatically launched.

The CLIDE User’s Manual describes the CLIDE graphical user’s interface (GUI), which 
allows the user to access the following applications from CLIDE:

• Cirrus Logic C-Compiler—described in this manual

• CASM—Cirrus Logic Cross-assembler (CASM) described in the 32-bit DSP Assembly 
Programmer’s Guide

• CLIDE debugger—described in the CLIDE User’s Manual, debugs both Assembly and C 
language source files, and replaces the Hydra debugger

• Primitive Elements Wizard—described in the CLIDE User’s Manual and is an XML file 
Wizard used to create custom primitives that are debugged within CLIDE

• Simulator—described in the CLIDE User’s Manual 

• Source editor—described in the CLIDE User’s Manual
DS811UM15 1-1
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 1.2 Standard Conformance of CCC

CCC supports the C99 standard with Embedded C extension for fixed point types and 
memory zone qualifier, but without the following features:

• Floating point types (except for floating point constants in expressions that can be 
evaluated to a constant value in compile time) and related standard libraries

• File and console input/output and related standard libraries

• Variable number of function arguments and related standard library

• Several other standard libraries: time.h, signal.h, locale.h, and setjmp.h

• Wchar type

• Restricted pointers

• Variable length arrays

• The long long int type and library functions (the type key word is supported, but it's size 
is not 64 bits)

• Universal character names (\u and \U)

• Mixed declarations and code

• More flexible array initialization (for example, "int x[5] = {[2] = 2, [4] = 3};")

• Declaration in for loop (for example, "for (int x = 0...")

• Multiple appearance of inline attribute in function declaration

• Static array size in function parameter (for example, "int foo(int x[static 5])")

• Saturation on overflow for fixed point abs functions declared in stdfix.h (see 
Section 10.4)

Note: Bit fields are supported with the following restrictions:

• No single bit field can be longer than 32 bits.

• All bit fields are treated as unsigned integers. A “signed” attribute is ignored.
1-2 DS811UM15
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Chapter 2

2CCC Command Line Options

 2.1 Description of CCC Command Line Options
This chapter describes the options for using the command line in the CCC.

 2.1.1 Command Line Format

The format of the compiler command line is as follows:

ccc2 -<options> <C source file>

When calling the CCC compiler without arguments, the command line options Help message 
is displayed.
DS811UM15 2-1
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 2.1.1.1 Details of Command Line Options

The <options> field contains zero or more compiler control directives. Each directive starts 
with the character “-” and ends with a space. Table 2-1 contains the command line options 
that are available.

Table 2-1. Command Line Options

Command Line Option Description

-c Stop after assembling. Do not link. Compiler produces the assembler (.s) and the object (.o) file.

-cdl 
Create file dependency list. Important for incremental build. The list will be created in a file with 
extension .cdf.

-Cl 
Emits corresponding C line for every instruction block. This command option is only valid if the -g 
option is used.

-D<symbol> Define a symbol.

-edi-lines Emit corresponding C line numbers as comments in the .s file.

-emit-hints
Emit useful information about generated code, such as: advises how to change the C code in order to 
improve the generated code, information about stack usage for passing arguments, information about 
points in code where SRS is used, et cetera.

-esc Emit .s file in the same folder where .c file is located, regardless of -o switch.

-falias-analysis[=N]
Use alias analysis information. N specifies how deep in the function call graph the analysis should go. 
Increasing the limit makes analysis more precise but also increases compilation time. Default value is 
1. Value -1 means "as deep as possible".

-fcompact Turn on compactor optimization, which utilizes instruction-level parallelism.

-fconst-pool[=M]
Load constants from memory. M can be X, Y, or P, to select which memory zone the pool is going to 
be. Default is P.

-fcse Turn on common subexpression elimination optimization.

-femit-asm-struct Emits an assembly .struct definition in the .s file for the struct types used in the C code.

-fif Try several compilation strategies and choose the best result. Compilation lasts longer.

-finline-functions Automatically find suitable functions to inline. Available only if -wpo is enabled.

-fno-inline Do not inline functions. That is, ignore the inline function attribute.

-fnfs
Do not use stack. Statically allocate function memory instead. Valid only if there is no recursion in the 
program. Refer to Section 7.2.1 for additional information regarding static stack frame calling 
conventions.

-fno0init
Do not initialize to 0 static storage duration objects that are not explicitly initialized. Useful for reducing 
.uld size.

-fno-hw-loop-detection Do not create hw loops.

-fprc Propagate constants and evaluate constant expressions.

-funsafe-loop-optimizations
Assume number of loop iterations is never 0. If number of loop iterations is not constant, but can be 
calculated each time before the loop is entered, hardware loop can be used only if the number of 
iterations is never 0.
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-fwrapv

Specify signed integer overflow behavior as wrap-around, which makes code slightly larger. 
Otherwise, the overflow behavior is undefined.

-g
Write DWARF2 debug information into the object file and create debuggable code. (See Chapter 6 for 
more information on debug attributes.)

-h Print command line help screen.

-ida
Ignore function debug_on and debug_off attributes. (See Chapter 6 for more information on debug 
attributes.)

-ira
Use interprocedural register allocation. Allocates only registers clobbered by a called function for each 
function call. Default setting assumes all clobberable registers are clobbered.

-I<include_path> Pass the include path to the compiler.

-o<output file name>
Specify the name of the output files (file extension, if given, is ignored). Default output file name is the 
same as the input file name, or the last input file name, if multiple input files are provided.

-ruf Report error for undeclared function calls.

-s Silent option. Compile without providing any progress information.

-S Stop before calling assembler and linker. Compiler output is just the assembler (.s) file.

-v Display the version of the compiler.

-w Suppress warnings

-wpo
Whole program optimization. Turn on when you pass all C source files of your program at once. Other 
switches become available.

Table 2-1. Command Line Options (Continued)

Command Line Option Description
DS811UM15 2-3
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 2.1.1.2 System Environment Variables Used by the Compiler

The compiler makes use of the following system environment variables:

• The CCC_INCLUDE variable specifies the default include path.

• The CCC_LIB variable specifies the default runtime library path.

• The C-compiler’s compile process is also affected by the CASMSPEC and CLINKSPEC 
environment variables. (See the 32-bit DSP Assembly Programmer’s Guide for more 
information about the CASMSPEC and CLINKSPEC environment variables.)

When called from command line, CCC calls casm and clink like this:

casm.exe FileName.s -oOutputFileName.O --debug --casmspec -s -c

clink.exe OutputFileName.O LibPath\crt0.o -lLibPath -oOutputFileName.img --
clinkspec

where LibPath is geathered from CCC_LIB environment variable.

The whole build process is configurable from CLIDE on Project Properties page.

 2.1.1.3 Additional Information and Examples of Using Command Line Options

 2.1.1.3.1 -fno0int

Example 1 With -fno0int

int big_buffer[10000];

int big_initialized_buffer[10000] = {0};

Example 2 Without -fno0init

_big_buffer:

.bsc (0x2710), 0x00000000

_big_initialized_buffer:

.bsc (0x2710), 0x00000000

With -fno0init:

_big_buffer:

.bss (0x2710)

_big_initialized_buffer:

.bsc (0x2710), 0x00000000
2-4 DS811UM15
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 2.1.1.3.2 -fwrapv

Example 3 With/Without -fwrapv 

With -fwrapv:

int is_negative(int x)

{

     int ret;

     if (x < 0)

     {

          ret = 1;

     }

     else

     {

          ret = 0;

     }

     return ret;

}

 Without -fwrapv:

_is_negative:

     a0 & a0

     if (a >= 0) jmp (else_0)

     uhalfword(a0) = (0x1)

     jmp (endif_0)

else_0:

     a0 = 0

endif_0:

     ret

With -fwrapv:

_is_negative:

     a0 = a0h     #!!!

     a0 & a0

     if (a >= 0) jmp (else_0)

     uhalfword(a0) = (0x1)

     jmp (endif_0)

else_0:

     a0 = 0

endif_0:

     ret
DS811UM15 2-5
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Example 4 Function is_negative is from Example 3

int t = 0xFFFFFFFE;

void main()

{

     int y = is_negative(t + 2); //overflow occurs

     ...

}

Without -fwrapv, y will be 0. With -fwrapv, y will be 1.

Example 5

int shift_right_for_2(int x)

{

     return x >> 2;

}

Without -fwrapv:

_shift_right_for_2:

     a0 = a0 >> 1

     a0 = a0 >> 1

     a0l = (0x0)

     ret

With -fwrapv:

_shift_right_for_2:

     a0 = a0h#!!!

     a0 = a0 >> 1

     a0 = a0 >> 1

     a0l = (0x0)

     ret

Example 6 shift_right_for_2 is from Example 5

int t = 0xFFFFFFFF;

void main()

{

     t <<= 2; //overflow occurs

     int y = shift_right_for_2(t);

     ...

}

Without -fwrapv, y will be 0xFFFFFFFF. With -fwrapv, y will be 0x3FFFFFFF.
2-6 DS811UM15
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 2.1.1.3.3 -fconst-pool

Example 7

int foo(int x)

{

     return x + 0x1234567;

}

Without -fconst-pool:

     .code_ovly

_foo:

     a1 = (0x123)

     lo16(a1) = (0x4567)

     a0 = a0 + a1

     ret

With -fconst-pool=X:

     .xdata_ovly

__extractedConst_0_1

     .dw  (0x1234567)

     .code_ovly

_foo:

     a1 = pmem[__extractedConst_0_1 + 0]

     a0 = a0 + a1

     ret
DS811UM15 2-7
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Example 8

int bar(int x)

{

     return x - 0x1234567;

}

int foo(int x)

{

     return x + 0x1234567;

}

Without -fconst-pool:

     .code_ovly

_bar:

     a1 = (0x123)

     lo16(a1) = (0x4567)

     a0 = a0 - a1

     ret

_foo:

     a1 = (0x123)

     lo16(a1) = (0x4567)

     a0 = a0 + a1

     ret

With -fconst-pool:

     .code_ovly

__extractedConst_0_2

     .dw  (0x1234567)

     .code_ovly

_bar:

     a1 = pmem[__extractedConst_0_2 + 0]

     a0 = a0 - a1

     ret

_foo:

     a1 = pmem[__extractedConst_0_2 + 0]

     a0 = a0 + a1

     ret
2-8 DS811UM15
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 2.1.1.3.4 -emit-hints

There are currently four groups of info messages that the CCC reports when the -emit-hints 
switch is turned on:

1. Information about stack usage for function arguments.

Every function call where stack is being used for the passing of arguments or a return value is 
gong to be reported. See Section 9.2.1 for additional information.

2. Information about translation of loops into hardware loops.

If the compiler is not able to translate a certain loop in the source code into a hardware loop, 
there will be message containing the reason it was unable to translate. If you want to make 
the compiler translate that loop into a hardware loop, try to satisfy the condition stated in the 
message. See Section 9.2.2.1 for additional information.

3. Information about usage of compiler internal runtime functions in the generated code.

Cirrus DSP does not have direct hardware support for all C functionalities, so some of them 
are implemented by calling internal runtime functions. The code that causes the usage of 
those functions can usually be changed so that it does not require those functions. See 
Section 3.3.4 for additional information.

Section 3.3 explains that the following three types are best used in C programs for the Cirrus 
DSP: fract, long fract, and long accum. If you use just those fixed-point types, then only one 
of the internal functions in the following table can be present in the compiled code. All other 
internal functions are related to the usage of fixed-point types other than fract, long accum, 
and long fract.

Table 2-2. Internal Functions

int_to_fract
int_to_laccum
int_to_lfract
uint_to_fract
uint_to_laccum
uint_to_lfract

An integer (signed or unsigned) variable is being converted to one of the fixed-point types. Very often, this 
conversion is a result of a coding mistake. It is useful only in a small number of cases. If bitwise conversion was 
intended, then it can be performed by intrinsic functions in the stdfix.h header. See Section 3.3.2 for more 
information.

laccum_to_int
A fixed-point variable is being converted to an integer type. Very often, this conversion is a result of a coding 
mistake. It is useful only in a small number of cases. If bitwise conversion was intended then it can be 
performed by intrinsic functions in the stdfix.h header. See Section 3.3.2 for more information.

div_sat_laccum
A fixed-point division is being performed. The function does full precision division. If you want faster or less 
precise division, call the appropriate function. Several different division functions are given in dsplib.h.

div
udiv

Integer division (signed or unsigned) is being performed. The function does full precision division. If you want 
faster or less precise division, write and call the appropriate function.

lshift
rshift
ulshift
urshift

The shifting of integer variables (signed or unsigned) for a variable number (that is, not constant) of places is 
being performed. Listed functions shift values one bit at a time for a desired number of times, but better results 
(speed-wise) can be obtained by multiplying the value with a constant picked from the look-up table. In the next 
version, CCC compiler will be able to do this automatically, but, at the moment, the only way to do it is manually 
in the source code.
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4. Information about the use of an SRS (Shifter/Rounder/Saturator) unit.

This group of messages is useful if you want to control the SRS unit from C code, as seen in 
Section 3.3.2. That way, you can be sure that changes of SRS behavior which you introduce 
are going to affect only the intended lines of code. In the SRS for shifting example in 
Section 3.3.2, from line 4 to line 10, the behavior of SRS is altered. An info message would 
be emitted for line 7 (“*p = (long accum)(*p);”), but not for any other line in between the 4th 
and 10th line. That way, you can be sure that only line 7 would be affected by SRS changes, 
which was the intention in the example.

lshift_laccum
rshift_laccum

The shifting of fixed-point variable for a variable number (that is, not constant) of places is being performed. The 
situation is similar to integer shifting functions, but it has to be noted that some fixed-point types are more than 
32 bits wide, and their shifting using the look-up table is not as simple.

mul_sat_laccum

This function is called when the multiplication of two fixed-point types is being performed, where at least one of 
the types is wider than 32 bits. Check if that was the intention or just a coding error and whether that precise 
multiplication is necessary. If it is necessary, it is important to note that this function performs full precision 
multiplication of two long _Accum types, but the same function is called for all other cases. Therefore, if lower 
precision types are multiplied (for example, _Fract * long _Accum) then this function introduces unnecessary 
overhead. For the next version of the CCC, it is planned to have separate functions for every possible 
multiplication case, but, at the moment, the only way to get the best efficiency in the described cases is to 
manually write assembly function for the desired multiplication (or embed the assembly code in asm 
statement).

mod
umod

This performs a division reminder operation on integers (signed or unsigned). There is no hardware support for 
this operation, so try to avoid it if code speed is important. In cases where the right operand is a power of two, 
this operation can be performed using bit masking. In other cases, avoiding division reminder operation is not 
trivial.

Table 2-2. Internal Functions
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Chapter 3

3Data Types

 3.1 Overview
CCC fully supports all standard C data types, but support for the “long long” integer type and 
floating-point types is currently restricted. CCC extends the standard C data type set with 
fixed-point data types as described in ISO/IEC TR 18037.

The size of the long long type is 32 bits. A future version of CCC will implement long long as 
64 bits.

Since Cirrus DSPs that CCC targets are fixed-point DSPs, floating-point arithmetic can only 
be supported through emulation. Because of that, support of floating-point data types in CCC 
is restricted to usage in constant expressions. In other words, floating-point arithmetic is 
supported if it can be performed in compile time.

For more information on the C programming language standard, see ISO/IEC JTC1 SC22 
WG14 N102. 

For extensions to the C programming language standard for embedded processors, see 
“Programming languages, their environments and system software interfaces — Extensions 
for the programming language C to support embedded processors.” in ISO/IEC TR 18037.

 3.2 Integer Data Types
Sizes of integer data types are given in Table 3-1:

The size of the pointers are 16 bits. Enums are implemented as a signed integer. The char 
type without an explicit sign qualifier is treated as unsigned.

Table 3-1. Integer Data Types

Type Size in Bits

char 32

short 32

int 32

long 32

long long 32
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 3.3 Fixed-point Data Types

The compiler complies with the fixed-point types standard declared in the Embedded C 
Extension (ISO/IEC JTC1 SC22 WG14 N1021). In the document, two groups of fixed-point 
data types are added to the C language: the fract types and the accum types. The data value 
of a fract type (both signed and unsigned) has no integral part, hence values of a fract type 
are in range [-1.0, +1.0]. Accum types in CCC are defined to have 8 integral bits, and the 
values of accum type are in range [-256.0, +256]. Unsigned accum types have 9 integral bits, 
and its values are in range [0.0, 512.0]. A type’s precision depends on the number of 
fractional bits it has. Table 3-2 describes the available fixed-point types along with their size 
and format in CCC.

The formal names of the new keywords start with an underscore followed by an uppercase 
letter to avoid possible name clashes in existing programs. However, in the header stdfix.h, 
these formal names are used to define the natural spellings as aliases. So, instead of 
“_Fract” and “_Accum”, the user can use “fract” and “accum”.

In the Cirrus DSP architecture, data registers are 32 bits long, a data register pair is 64 bits 
long, and accumulators are 72 bits long; all of which are signed. Long accum, fract, and long 
fract data types are best used in C programs for the Cirrus DSP processor. Other data types 
are supported, but operations with those types usually require more instructions and often 
involve calls to runtime functions (see Section 3.3.4).

Table 3-2. Fixed-point Data Types

Type Syntax Size in Bits Number Format

signed

short

_Fract

32 s.31

— 32 s.31

long 32 s.31

unsigned

short 32 0.31

— 32 0.31

long 64 0.63

signed

short

_Accum

40 s8.31

— 40 s8.31

long 72 s8.63

unsigned

short 40 9.31

— 40 9.31

long 72 9.63
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 3.3.1 Fixed-point Constants

In C language, the type of a constant is determined by the constant suffix. For example, suffix 
“f” defines float type constant, therefore constant “0.5f” is a float type constant, while “0.5” 
(without suffix) is a double type constant. Suffixes for fixed-point constants are shown in 
Table 3-3.

Note: The suffix is not case sensitive; the table only gives lowercase letters.

A fixed-point constant evaluates to the closest representable value that is in the range of the 
indicated type. Exceptions are constants with the value of the type's upper bound range 
(such as 1.0r, 256.0lk, 512.0ulk, et cetera). These constants denote the maximal value for the 
type because the exact value is not representable (value ranges are left-closed and right-
open intervals). A _Fract constant can also be expressed in hexadecimal format. This 
hexadecimal number is interpreted as a bit representation of the fixed-point value rather than 
the integer value. For this approach to work, the suffix of the fixed-point constant must be 'r'.

Note: The C standard specifies that constants without a suffix are considered to be an integer 
type if a decimal point is not present or double type if a decimal point is present. All other 
types are defined by a suffix. Fixed-point constants must always have a suffix. Otherwise, 
they are not fixed-point constants. For more information about usage of floating-point (both 
float and double) constants, see Section 3.4.

Here are examples of some fixed point constants:

0.8932r// _Fract constant

0.8932LR// long _Fract constant

12.6574k// _Accum constant

-150.778892LK// long _Accum constant

Table 3-3. Fixed-point Constants

Type Syntax Suffix

signed

short

_Fract

hr

— r

long lr

unsigned

short uhr

— ur

long ulr

signed

short

_Assum

hk

— k

long lk

unsigned

short uhk

— uk

long ulk
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20.15r// _Fract constant, but outside the range. Evaluates to the maximal 
value for the type. A warning will be issued.

-20.15r// _Fract constant, but outside the range. Evaluates to the minimal 
value for the type. A warning will be issued.

1.0r// _Fract constant, but outside the range. Evaluates to the maximal value 
for the type. There will be no warning, because it is regular case.

12k// _Accum constant, same as 12.0k

0x40000000r// _Fract constant, same as 0.5r

0x40000000// integer constant, same as 1073741824

0.3// double constant

 3.3.2 Fixed-point Type Conversions

Conversions from a fixed-point to an integer type round toward zero. For example, if a _Fract 
value is converted to an integer value, the only possible results are -1 and 0.

Conversions from an integer to a fixed-point type are defined so that the integral part of the 
fixed-point type is the same as the integer value, while the fractional part is zero. If the integer 
value is outside of the fixed-point type range, the result is saturated. That is, it is set to the 
closest representable value. For example, if an integer value is converted to a _Fract value, 
the only possible results are -1.0r, 0.0r, and maximum _Fract value (1.0r).

Bitwise conversions between integer and fixed-point types are supported through several 
functions defined in <stdfix.h>. The bitwise fixed-point to integer conversion functions return 
an integer value equal to the fixed-point value of the argument multiplied by 2^F, where F is 
the number of fractional bits in the fixed-point type. The result type is an integer type big 
enough to hold all valid result values for the given fixed-point argument type. The bitwise 
integer to fixed-point conversion functions return a fixed-point value equal to the integer value 
of the argument divided by 2^F, where F is the number of fractional bits in the fixed-point 
result type of the function. Available functions for bitwise conversion are given in Table 3-4:

Table 3-4. Available Functions for Bitwise Conversion

int bitshr(short _Fract);

unsigned int bitsuhr(unsigned short _Fract);

int bitsr(_Fract);

unsigned int bitsur(unsigned _Fract);

short _Fract hrbits(int);

unsigned short _Fract uhrbits(unsigned int);

_Fract rbits(int);

unsigned _Fract urbits(unsigned int);
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Since there are no integer types that are bigger than 32 bits, bitwise conversion of fixed-point 
types other than _Fract and short _Fract is not possible. However, three additional functions 
are provided for bitwise conversion of parts of the long _Accum type: 

int bitsgetlo(long _Accum); // returns lowest 32 bits of long _Accum value

int bitsgethi(long _Accum); // returns higher 32 bits of long _Accum value

int bitsgetg(long _Accum); // returns highest 8 bits of long _Accum value

Conversions from a fixed-point to a floating-point type are not defined. Conversions from a 
floating-point to a fixed-point type are defined so that the resulting fixed-point value is the 
closest representable value of the indicated fixed-point type. Conversions between different 
fixed‐point types are defined as follows:

1. If the source type has greater precision, then rounding is performed.

2. If the source type has a bigger value range, then saturation is performed if the source 
value is outside of the destination type range.

For the following conversions, the SRS (a part of Cirrus DSP architecture) is utilized for performing 
saturation and rounding:

The SRS is utilized only for the conversions noted in Table 3-5.

The value of the mr_r, mr_s, and mr_sr registers affect the behavior of the SRS unit. See 
Section 2.2.2.2 of the Assembly Language Programmer’s Manual for details on how the 
settings of the mr_sr register affects SRS. The best way for a programmer to change the 
value of these registers is by calling the appropriate set function declared in the stdfix.h 
header file. 

In addition to saturation and rounding, SRS can also perform shifting. If SRS is set to perform 
shifting, then shifting will be done implicitly when the type conversions that utilize SRS are 
performed.

Table 3-5. Conversions for Saturation and Rounding

Destination Type Source Type

short _Fract, _Fract long _Fract

short _Fract, _Fract short _Accum

short _Fract, _Fract _Accum

short _Fract, _Fract long _Accum

long _Fract long _Accum
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The following examples illustrate the use of intrinsic functions for getting or setting the value 
of the mr_sr register:

#include <stdfix.h>

/* set mr to no shift, no round */

set_mr_sr(NO_SHIFT | NO_ROUND);

/* set mr to no shift, round toward zero */

set_mr_sr(NO_SHIFT | ROUND_TO_0);

/* set mr to shift left by 1, round toward zero */

set_mr_sr(SHIFT_LEFT_1 | ROUND_TO_0);

/* set mr to keep current shift mode, round by adding .5 and truncating */

set_mr_r(ADD_0_5_TRUNCATE);

/* set mr to shift right by 1, keep current round mode */

set_mr_s(SHIFT_RIGHT_1);

In crt0.o, the mr_sr register is set to NO_SHIFT and ADD_0_5_TRUNCATE before the call to 
main(). However, if crt0.o is not used, the programmer must take care of mr_sr register and 
set it to the appropriate value. The best practice is to define mr_sr value, which is valid for the 
whole program. Set it at the beginning. When there is a need to change the rounding and 
shifting behavior for some part of the code, just before the code set mr_sr to new value, reset 
it to the original value at the end of the code piece.
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The following example shows one usage of SRS for shifting:

// Without utilization of SRS for shifting

void foo(fract* p)

{

int i;

for (i = 0; i < 10; i++)

{

*p = *p >> 1;

p += 1;

}

}

// With utilization of SRS for shifting

void foo(fract* p)

{

int i;

set_mr_sr(SHIFT_RIGHT_1 | ADD_0_5_TRUNCATE);

for (i = 0; i < 10; i++)

{

*p = (long accum)(*p); // in conversion from long accum to fract SRS will 
shift right implicitly

p += 1;

}

set_mr_sr(NO_SHIFT | ADD_0_5_TRUNCATE);

}

 3.3.3 Fixed-point Type Expressions

Operations that can be performed on fixed-point types are:

• Unary:

• negation (-)

• Binary:

• relational operations (<, <=, ==, !=, >=, >)

• addition (+), subtraction (-), multiplication (*), and division (/)

• shifting left (<<) and right (>>)

with appropriate assignment forms: +=, -=, *=, /=, >>=, and <<=. In other words, fixed-point 
types support all operations applicable on floating-point types, with addition of shifting.
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When a fixed-point type operand is involved in an operation, the following rules apply:

1. If both operands are fixed-type and one of the operands is signed and the other is 
unsigned, the unsigned operand will be converted to its corresponding signed type. This 
is opposite from the usual arithmetic conversions for integer types where unsigned has 
the advantage.

2. No other conversions are performed on the source types. This is also different than the 
usual arithmetic conversion in C where both operands are converted to the common 
type (except in case of shifting).

3. The resulting type is the higher rank type of the two operands (except for relational 
operations where resulting type is integer). Type rank is given in Table 3-6. Fixed-point 
types have higher rank than integer types but lower rank than floating-point types.

4. The only exception to rule 3 is multiplication of _Fract type (or short _Fract type) 
operands. In this case, the resulting type is long _Accum in order to capture the full 
precision of the multiplication.

Note: Shift operation expects the right hand operand to be an integer type and to have a positive 
value. The resulting type of a shift operation is always the type of the left hand operand 
(which is for fixed-point types consistent with rule 3 above).

Table 3-6 shows the rank of the arithmetic data types, from highest to lowest:

The following examples illustrate the main consequences of the above arithmetic 
conversions:

_Fract f = 0.25r;

int i = 3;

f = f * i;

// The type of "f * i" expression is _Fract, and the value in f will be 0.75r

unsigned _Fract u = 0.5ur;

_Fract s = 0.5r;

s = s * u;

// The type of "s * u" expression is (signed)_Fract, and the value in s will 
be 0.25r

Table 3-6. Arithmetic Data Types

Rank Type

highest long _Accum

lowest

_Accum

short _Accum

long _Fract

_Fract

short _Fract

int
3-8 DS811UM15 



Data Types
Cirrus Logic C-Compiler User’s Manual

3

unsigned long _Fract u = 0.5ulr;

_Fract s = 0.5r;

long _Fract p = s * u;

// The type of "s * u" expression is (signed) long _Fract, and the value in s 
will be 0.25lr

_Fract x = -1.0r;

_Fract y = -1.0r;

long _Accum z = x * y;

// The type of "x * y" expression is long _Accum, and the value in z will be 
1.0lk

_Fract x = -1.0r;

_Fract y = -1.0r;

_Fract z = x * y;

// The type of "x * y" expression is long _Accum, and conversion from long 
_Accum to _Fract will be performed when assigning to z, with 1.0r (which is 
different than 1.0lk) as the resulting value, due to saturation.

fract x = 0.25r;

fract y = x << -1;

// Value in y is undefined, because right hand operand is not positive.

fract x = 0.25r;

fract y = x << 3;

// Overflow happens, and value in y is not defined.

fract x = 0.25r;

fract y = (long accum)x << 3;

// y will be 1.0r. (long accum)x << 3 is 2.0lk (no overflow now), which will 
be, due to saturation, reduced to 1.0r when moving to y.

fract x = 0.25r;

fract y = (long accum)x << 15;

// y will again be undefined, because overflow now happens with long accum 
type and all the bits are shifted out of accumulator.

fract x = 0.25r;

fract y = (sat fract)x << 15;

// y will be 1.0r. Saturated fract type will guarantee that saturation will 
happen on overflow, however, this is done at the expense of additional 
instruction cycles.

 3.3.4 Costly Fixed-point Expressions

The DSP architecture is designed to efficiently calculate most expressions between fixed-
point data types or between fixed-point and integer data types. However, some operations 
between some data types require extra calculations that must be performed via a call to a 
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subroutine, which can require many cycles. As of version 6.7.9, the C Compiler will emit 
indications into the output log about which lines of C code involve expressions that require 
function calls to implement.

Some general guidelines for operations which require this type of costly implementation are:

1. Some operations with fixed-point operands other than (short) _Fract, long _Accum, and 
long _Fract. Those are the following types: (short) _Accum, unsigned versions of all 
fixed-point types, and saturated versions of all fixed-point types.

2. Division. All division operations are implemented via a software function as the DSP 
hardware does not support division.

3. Division remainder operation (mod, %) (for the same reasons as division).

4. Conversions from integer to fixed-point type, and vice versa. See Section 3.3.2 to see 
what those conversions imply. Bitwise integer to/from fixed-point conversion, also 
described in Section 3.3.2, do not fall under this category and are performed very 
efficiently.

 3.4 Floating Point Data Types
Floating-point types are not completely supported by CCC. Support of floating-point data 
types in CCC is restricted to usage of floating-point constants in constant expressions. The 
whole constant expression, however, must not be of floating-point type. Also, long double 
type is not supported in any form. For example, this is supported:

fract x = 1.8 / 3;

long accum y = 700.0 / 40;

// the value in x will be 0.6r and the value in y will be 17.5lk;

But this is not:

fract x;

fract y = 1.8 * x;

// Exression "1.8 * x" is of floating-point type. It must be calculated in 
runtime, and that is not supported.

It is important to note that precision of float type is lower than precision of _Fract and _Accum 
types while double type has lower precision than long _Fract and long _Accum. For example:

fract x = 0.12341512364123; // double type constant

fract y = 0.12341512364123r; // _Fract type constant

fract z = 0.12341512364123f; // float type constant

// x and y will have the same value, but z will not, because precision of 
float type is lower than fract.

// Value in x and y will be closer to the actual value of the constant.

long accum a = 0.123415123641231235132;

long accum b = 0.123415123641231235132lk;

// a and b will not have the same value. Value in b will be closer to the 
actual value of the constant.
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Chapter 4

4Memory Zones

 4.1 Overview of Cirrus DSP Architecture Memory Zones
All Cirrus DSPs have two data memory zones (X and Y) and one program memory zone (P). 
The CCC supports these three memory zones. In Cirrus DSP architecture, there is also a 
possibility to read and write 64-bit words in a single instruction by accessing the addresses of 
the X and Y data memory zones. This is the fourth memory zone that the compiler supports, 
the XY memory zone, also called “L” memory.

When declaring a variable in C code, you can specify the variable with a memory-zone 
qualifier in which the variable resides. Thus, a variable is defined by its name, its type and its 
memory zone. If a memory zone is not specified, the compiler assumes X memory zone

 4.2 Memory-zone Qualifiers
The Cirrus-C Compiler supports four different memory zones as described in Table 4-1.

Table 4-1. Memory Zones and their Qualifiers

Memory Zones Memory-zone Qualifiers

Memory zone X __memX

Memory zone Y __memY

Memory zone P __memP

Memory zone XY __memXY
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 4.3 Declaration of a Global Variable

A memory zone can be specified only for global variables, which means that variables 
declared inside a function cannot be allocated in a named address space unless they are 
also explicitly declared as static or extern.

When a memory-zone qualifier is not used in a declaration, a global variable is placed in the 
default memory zone, memory zone X, as shown in Example 4-1.

Example 4-1 Global variable in the default memory zone

C Code:

int global = 0;

int main(void)

{

  return global;

}

Assembly Code:

  .xdata_mpm

  .public _global

_global:

  .dw (0x0)

  .code_mpm 

# Function : _main

_main 

  a0 = xmem[_global]

__main_END 

  ret

  .public _main
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The only way to place a global variable in a zone other than the default memory zone is to 
use a memory-zone qualifier, as shown in Example 4-2.

Example 4-2 Using a memory-zone qualifier

C Code:
__memY int global = 0;

int main(void)

{

  return global;

}

Assembly Code:
.ydata_mpm

  .public _global

_global:

  .dw (0x0)

  .code_mpm 

# Function : _main

_main 

  a0 = ymem[_global]

__main_END 

  ret

  .public _main
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You can also declare a pointer to a variable that resides in a specific memory zone, as shown 
in Example 4-3.

Example 4-3 Declaring a pointer to a variable in a memory zone

C Code:
__memY int global = 0;

__memY int * pglobal = &global;

int main(void)

{

  return *pglobal;

}

Assembly Code:
.ydata_mpm

.public _global

_global:

.dw (0x0)

.xdata_mpm

.public _pglobal

_pglobal:

.dw _global

.code_mpm

# Function : _main

_main 

xmem[i7] = i4

i4 = xmem[_pglobal]

nop

a0 = ymem[i4]

__main_END

i4 = xmem[i7]

ret

.public _main

In Example 4-3 the pointer variable is placed in the default memory zone (X), but a pointer 
variable can have a memory-zone qualifier of its own. Example 4-4 shows how a pointer 
variable that points to the value in the Y memory zone and resides in the Y memory zone is 
declared.
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Example 4-4 Declaring a pointer to a variable that points to a value and resides in a 
memory zone

C Code:
__memY int global = 0;

__memY int * __memY pglobal = &global;

int main(void)

{

  return *pglobal;

}

Assembly Code:
.ydata_mpm

.public _global

_global:

.dw (0x0)

.ydata_mpm

.public _pglobal

_pglobal:

.dw _global

.code_mpm 

 # Function : _main

_main 

xmem[i7] = i4

i4 = ymem[_pglobal]

nop

a0 = ymem[i4]

__main_END 

i4 = xmem[i7]

ret

.public _main

 4.4 Declaration of a Local Variable
There is no way to specify a memory zone for a local variable. Usage of memory-zone 
qualifiers in a declaration of a local variable is not allowed. The exception to this rule is a case 
when a programmer specifies the memory zone to which a local pointer variable is pointing. 
But in this case, location of the local pointer variable is still handled in the same way as any 
other local variable. If you try to specify a memory zone for a local variable, the compiler 
ignores the memory qualifier, and puts the variable in an accumulator or on the stack.
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The C program in Example 4-5 shows a declaration of two local pointers to integer data in Y 
memory zone. One pointer has an additional memory-zone qualifier that indicates that a 
programmer wants to place the pointer in the Y memory zone. However, both pointers end up 
as index registers because they do not reside in any zone, but the example pointers are still 
pointing to the memory zone Y.

Example 4-5 Two local pointers to integer data in Y zone

C Code:
__memY int data1 = 1;

__memY int data2 = 2;

int main (void)

{

  __memY int * localP1 = &data1;

  __memY int * __memY localP2 = &data2;

  return *localP1 + *localP2;

}

Assembly Code:
.ydata_mpm

.public _data1

_data1:

.dw (0x1)

.ydata_mpm

.public _data2

_data2:

.dw (0x2)

.code_mpm 

 # Function : _main

_main 

xmem[i7] = i5;i7 += 1

i5 = (0) + (_data1)

xmem[i7] = i4

b0 = ymem[i5]

i4 = (0) + (_data2)

a0 = ymem[i4]

a0 = a0 + b0

__main_END 

i4 = xmem[i7];i7 -= 1

i5 = xmem[i7]

ret

.public _main
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 4.5 Memory-zone Typecast Operation

After it is declared, a variable cannot change its memory zone using a typecast operation. 
However, a redirection of a pointer variable is allowed.

Example 4-6 shows the usage of a pointer that is declared to point to long fract data in the XY 
memory zone to read from the XY zone, but also to write to the X zone and the Y zone. 
Notice that only one index register is in use, thus saving resources.

Example 4-6 Pointer declared to read from XY zone and write to X zone and Y zone

C Code:
#include<stdfix.h>

__memXY long fract whole = 0.27192006lr;

__memX fract high;

__memY fract low;

void main(void)

{

long accum accumulator;

__memXY long fract *pointer;

pointer = &whole;

accumulator = *pointer;

whole = accumulator;

high = *(__memX fract*)pointer;

low = *(__memY fract*)pointer;

}

Assembly Code:
.ydata_mpm

.public _low

_low .bsc (0x1), 0x00000000

.data_mpm

.public _whole

_whole:

 .dd (0x22ce46ca69c61751)

.xdata_mpm

.public _high

_high .bsc (0x1), 0x00000000

.code_mpm 

 # Function : _main

_main 

i0 = (0) + (_whole)

a0 = xymem[i0]

a0 = long(a0)

xmem[_whole] = a0h

ymem[_whole+0] = a0l
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a0 = xmem[i0]

xmem[_high] = a0

b0 = ymem[i0]

ymem[_low] = b0

__main_END 

ret

.public _main
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Chapter 5

5Use of Circular Buffers

 5.1 Overview
The Cirrus 32-bit DSP architecture uses modulo address arithmetic. The CCC takes 
advantage of this capability by supporting the use of circular buffers in the C code. 

To use circular buffers, the file circbuff.h must be included in the C source file. This file 
defines all the values of the modulo addresses that are supported by the Cirrus 32-bit DSP, 
and a definition of a macro for use with circular buffers in C code.

 5.2 Circular Buffer Modulo Addressing
Modulo addressing can be used to implement circular buffers. The size of a circular buffer 
must be a power of 2, ranging from 4 to 32768. Table 5-1 contains the supported modulo 
values.

Table 5-1. Supported Modulo Addressing Values

Symbol Addressing Mode

MOD_LIN Linear Addressing

MOD_4 Modulo 4

MOD_8 Modulo 8

MOD_16 Modulo 16

MOD_32 Modulo 32

MOD_64 Modulo 64

MOD_128 Modulo 128

MOD_256 Modulo 256

MOD_512 Modulo 512

MOD_1024 Modulo 1024

MOD_2048 Modulo 2048

MOD_4096 Modulo 4096

MOD_8192 Modulo 8192

MOD_16384 Modulo 16384

MOD_32768 Modulo 32768

MOD_BITREV Reverse Binary Addressing
DS811UM15 5-1
 



Use of Circular Buffers
Cirrus Logic C-Compiler User’s Manual

5

Example 5-1 and Example 5-2 show examples of modulo addressing.

Example 5-1 Example 1 of modulo addressing

#include <circbuff.h>

int *foo(int *p)

{

return CIRC_INC(p, MOD_16 + 2);

}

.code_mpm 

.extern ___circ_inc

 # Function : _foo

_foo 

nm0 = (12290)

nop

i0 += n

AnyReg(a0, i0)

nm0 = (0)

__foo_END 

ret

.public _foo

Example 5-2 Example 2 of modulo addressing

#include <circbuff.h>

void main(_Fract *p3) {

  int i;

  _Fract y0 = 0;

  for (i=0;i<16;i++) {

    *p3 = y0; p3 = CIRC_INC(p3, MOD_64 + 4);

  }

}

.code_mpm

.extern ___circ_inc

 # Function : _main

_main 

x0 = (0)

nm1 = (20484)

do (16), Boundary_0

Label_3 

Boundary_0: 

xmem[i1] = x0;i1 += n
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nop

nm1 = (0)

__main_END 

ret

.public _main

To use modulo addressing, circular buffers must be placed in memory such that their base 
address is a multiple of their size.

Circular buffers can be declared in the C code or Assembler code. If the circular buffer is 
declared in the C code, it has to use the attribute align directive for it. As shown in 
Example 5-3, array a is placed at an address that is a multiple of 16 and the address of array 
b is a multiple of 32:

Example 5-3 Using a circular buffer

#include <stdfix.h>

#include <circbuff.h>

__memX fract __attribute__((__aligned__(16))) a[16];

__memY fract __attribute__((__aligned__(32))) b[16];

void foo(__memX fract *p2, __memY fract *p3) {

  int i;

  fract y0 ;

  for (i=0;i<16;i++) {

    y0 = *p3; p3 = CIRC_INC(p3, MOD_16 + 4);

    *p2++ = y0;

  }

}

int main()

{

foo(a, b);

}

.xdata_mpm align 16

.public _a

_a .bsc (0x10), 0x00000000

.ydata_mpm align 32

.public _b

_b .bsc (0x10), 0x00000000

.code_mpm 

.extern ___circ_inc

 # Function : _foo

_foo 

AnyReg(i2, i0)
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nm0 = (12292)

do (16), Boundary_0

Label_3 

AnyReg(i0, i1)

x0 = ymem[i1]

i0 += n

AnyReg(i1, i0)

Boundary_0: 

xmem[i2] = x0;i2 += 1

nm0 = (0)

__foo_END 

ret

.public _foo

 # Function : _main

_main 

i0 = (0) + (_a)

i1 = (0) + (_b)

Label_1073741823 

call _foo

Label_4 

__main_END 

ret

.public _main
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Chapter 6

6Function Attributes

 6.1 Function Attributes
Function attributes inform CCC how that function should be compiled. Table 6-1 provides a 
list of all available function attributes. 

Table 6-1. List of Function Attributes

Attribute Syntax Description

__attribute__((debug_on))
Emits debug information for the function (ignore –g switch). If the  -ida command line 
switch is present, this function is ignored.

__attribute__((debug_off))
Does not emit debug information for the function (ignore –g switch). If the  -ida command 
line switch is present, this function is ignored.

__attribute__((fg_call)) This function represents the entry point for module foreground thread

__attribute__((bg_call)) This function represents the entry point for module background thread

__attribute__((fg_primitive_call)) This function represents the entry point for DSP Composer primitive foreground thread

__attribute__((bg_primitive_call)) This function represents the entry point for DSP Composer primitive background thread
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Chapter 7

7Generated Code

 7.1 Overview 
This chapter describes aspects of generated code in the Cirrus DSP architecture:

• CCC calling conventions

• Preserving hardware registers during function calls

 7.2 CCC Calling Conventions
In the CCC, function arguments are passed in the following manner:

• Arguments are numbered from left to right.

• When passing pointers, index registers are used

• When passing all other basic types (int, fract, accum...), accumulators are used

• Data registers are never used for passed arguments

• Variables of the structure type are passed via the stack.

• Index register i7 is used as a stack pointer. The stack is assumed to be in X memory, and 
grows upward (toward higher addresses).

• Return values, if any, are in the a0 accumulator.

•  For pointer arguments, the following index registers are used, in the following exact 
order:

i0, i1, i4, i5

The first pointer argument is passed through i0, second through i1, and so on.

• If there are more than four pointers in the function argument list, the remainder are 
passed via the stack.

• For the basic type arguments, the following accumulators are used in this exact order: 
a0, a1, b0, b1.

• The first basic type argument is passed through a0, second through a1, etc.

• Arguments are numbered from left to right.

• If there are more than four basic type arguments in the function argument list, the 
remainder are passed via the stack.

• Parameters are placed on the stack in a reversed order (the first parameter needed to be 
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passed getting the highest location on the stack), but read from within the function based 
on the distance from their location on the stack and the value of the stack pointer at the 
moment of entry.

• The following examples represent the stack as it is seen from within the called function:

Example 7-1 Example 1 calling conventions

foo(int p1, int p2, int p3, int p4, int p5, int p6)

Arguments will be passed as shown in Figure 7-1.

 Figure 7-1. Passing of Arguments When Using Accum Data Types
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Example 7-2 Example 2 calling conventions

foo(int*p1, int*p2, int*p3, int*p4, int*p5, int*p6)

Arguments will be passed as shown in Figure 7-2.

 Figure 7-2. Passing of Arguments When Using Ptr Data Types

Example 7-3 Example 3 calling conventions

typedef struct ExampleStruct

{

     int m1;

     int*m2;

     long accum m3;

}

foo(ExampleStruct p1, ExampleStruct p2)

Arguments will be passed as shown in Figure 7-3.
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 Figure 7-3. Passing of Arguments When Using Struct Data Types

Values of long fract or long accum types display an apparently different behavior when it 
comes to storage on the stack. The reason for this is the difference in the size of these types 
compared to the other basic types (64 and 72 bits as opposed to 32 bits, these sizes translate 
to 3, 2, and 1 memory locations, respectively).

The fact that the stack pointer is first moved for the number of locations required to store the 
value after which parts of the variable are stored on the stack one by one toward the previous 
value of the stack pointer causes the need for more steps to be taken in case of the 2 
mentioned types. This behavior is not visible for other basic types since the whole process is 
finished in one step. This information is diagrammed in Figure 7-4.
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 Figure 7-4. Storing Values of Long Accum Type on the Stack

Example 7-4 Example 4 calling conventions

foo(long accum p1, long accum p2, long accum p3, long accum p4, long accum p5, 
long accum p6)

Arguments will be passed as shown in Figure 7-5.

 Figure 7-5. Passing of Arguments When Using Long Accum Data Types
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Example 7-5 Example 5 calling conventions

typedef struct ExampleStruct

{

     int m1;

     int*m2;

     long accum m3;

}

foo(int p1, int*p2, Example Struct p3, long accum p4, int p5, int*p6, int p7, 
int*p8, int p9, long accum p10, int*p11, int*p12)

Arguments will be passed as shown in Figure 7-6.

 Figure 7-6. Passing of Arguments When Using Mixed Data Types

Some function attributes can change calling convention significantly. Attributes like fg_call 
and fg_primitive_call, force compiler to use user defined array named __C_STACK_FG as a 
stack. __C_STACK_FG array is expected to be defined by the user in the same memory 
zone in which stack is considered to be (x memory zone by default). Similar to this  bg_call 
and bg_primitive_call, force compiler to use user defined array named  __C_STACK_BG as a 
stack. In addition, function attributes fg_primitive_call and  bg_primitive_call force compiler to 
use Composer primitive calling convention for calling functions with those attributes.
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Normally when calling primitives, Composer is using index registers i7, i6 and i5 for pointer 
argument passing. Compiler in other hand is using i0, i1 and i4. When fg_primitive_call or  
bg_primitive_call attributes are used, compiler realizes that Composer primitive calling 
convention is used and that it should emit instructions which would redirect pointer 
arguments to the expected resources. Example 7-6 shows generated instructions for pointer 
arguments redirection:

Example 7-6 Generated instructions if  fg_primitive_call and  bg_primitive_call 
function arguments are used

void __attribute__((fg_primitive_call))  main()

{

}

.extern ___C_STACK_FG

.code_ovly 

_main 

i0 = i7 + (0) 

i7 = (___C_STACK_FG) 

i1 = i6 + (0) 

i4 = i5 + (0) 

__main_END 

ret

.public _main

 7.2.1 Static Stack Frame Calling Convention

When the -fnfs option is on, no stack would be used. For every function argument that needs 
to be passed by stack according to calling convention, memory will be statically allocated. 
Assembly symbols for those memory locations are formed like this:

__funcname_param_no, where 'funcname' is function name, and 'no' is the index of the 
parameter numbering them from left to right, while the first index is 0.

Example 7-7

foo(int p1, int p2, int p3, int p4, int p5, int p6);

For p5, the __foo_param_4 symbol will have its address, while for p6, it will 
be __foo_param_5.

 7.3 Hardware Register Preservation During Function Calls
The CCC allows both traditional C functions and also C-callable assembly functions. Each 
type of function has special considerations for preserving hardware register contents.
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 7.3.1  The CCC Translates C Functions into Assembly Functions

The CCC uses the registers i0, i1, i4, i5, a0, a1, b0, b1, i7 (as the stack pointer) and the stack 
to pass the C function’s arguments into the translated assembly function. See Section 7.2,  
"CCC Calling Conventions" on page  7-1 for the details of argument passing.

In addition to unused parameter registers, the registers a2, a3, b2, b3, x2, x3, y2, y3, i2, i3, 
and i6 are considered nonvolatile and must be saved and restored by a function that uses 
them.

The registers x0, x1, y0 and y1 are considered volatile and must be considered destroyed on 
function calls.

 7.3.2 User-defined C-callable Assembly Functions

It is often useful to call an assembly function from the C code. If a user defines one of these 
assembly functions, the user must include instructions within that assembly function to save 
and restore any of the following registers that are modified by it: a2, a3, b2, b3, x2, x3, y2, y3, 
i2, i3, i6 and i7. This is critical because other functions assume values that are preserved in 
these registers. 

Example 7-8 shows how to define and use a C-callable assembly function:

Example 7-8 C-callable assembly function

Your C source file that uses a C-callable assembly function:

            #include <stdfix.h>

 /* declare the function; it could be defined in a separate file that is 
linked in at compile time */

extern accum example_assembly_function(accum a, accum b);   

       int main()

{

          accum  a1_var, a0_var, b0_var;

          a0_var = example_assembly_function(a1_var, b0_var);      

}

The assembly function for this example should look like this:

_example_assembly_function:

      # argument a is in a0

      # argument b is in a1

      ...

      # return value should be in a0

      ret

Note the '_' at the beginning of the label.
7-8 DS811UM15 



Generated Code
Cirrus Logic C-Compiler User’s Manual

7

 7.3.3 Register Clobber Information Pragma

The register clobber information pragma may be used when an assembly language function 
is called from C. This pragma provides the C compiler with information about registers 
clobbered by the assembly language function. The information is useful only when 
interprocedural register allocation is enabled (-ira command line flag). This enables the 
compiler to organise register usage of the caller function in a way which renders the writer of 
the assembly function free from the work of preserving register values. Based on the 
information, the compiler can generate the store and load instructions, before and after the 
call to the assembly function, required to preserve data which could not be moved to non-
clobber registers. The register clobber information pragma only effects C function prototypes 
that are located one line after it.

Syntax: #pragma ASM_FUNC_CLOBBERED_REGS(<string of register names>)

The string of register names consists of one or more of the following register names, 
separated by commas:

a0,a1,a2,a3,b0,b1,b2,b3,x0,x1,x2,x3,y0,y1,y2,y3,i0,i1,i2,i3,i4,i5,i6

An example of a valid pragma looks like the following:

#pragma ASM_FUNC_CLOBBERED_REGS("a0,A2,b1,X3,i6")

Malformed register name list will still be parsed and will not cause errors under most 
circumstances. Unacceptable names and indexes are skipped, and the next register is 
parsed. Also note that i7 is reserved for the stack pointer and will not be assigned to the 
function used registers and is reported as a warning.

The following are examples of pragma use:

Example 7-9 Pragma Added to C Source

#pragma ASM_FUNC_CLOBBERED_REGS("a0")

void foo();

Relevant part of resulting code:

_main:

a1 = xmem[_x + 0]

call (_foo)

a0 =+ a1

ret

Pragma indicates that foo will use only a0, therefore the return value is placed inside it after 
the function call.

#pragma ASM_FUNC_CLOBBERED_REGS("a1")

void foo();

Relevant part of resulting code:

_main:

a0 = xmem[_x + 0]

call (_foo)
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ret

Pragma indicates that foo will use only a1, therefore the return value can be placed inside 
immediately, without risk of it being clobbered by the function call.
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Chapter 8

8Assembler Instructions with C-expression Operands

 8.1 ASM Statement Overview
An ASM statement enables a programmer to specify the operands of  assembler instructions 
using C expressions. A typical use can be found in an example of calling an assembly 
function from the C program or making some specific, small part of the code more efficient. In 
other words, an ASM statement provides the means for mixing assembler instructions with C 
statements. Example 8-1 uses the ASM statement to produce a “real multiply” instruction in 
the output assembler code. See Section 5.1.3 of the 32-bit DSP Assembly Programmer’s 
Guide for more information.

Example 8-1 Use ASM statement to produce a “real multiply” instruction

#include <stdfix.h>

accum foo(fract a, fract b) {

accum tmp;

asm("%0 = %1 * (unsigned)%2" : "=a"(tmp) : "x"(a), "y"(b));

return tmp;

}

.code_mpm 

Compiler returns:

 # Function : _foo

_foo 

AnyReg(x0, a0)

AnyReg(y0, a1)

Label_1610612734 

#ASM_BLOCK_BEGIN

a0 = x0 * (unsigned)y0

#ASM_BLOCK_END

Label_1610612735 

__foo_END 

ret

.public _foo
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 8.2 Implementation of Extended ASM Support

The implementation of the extended ASM support in the CCC follows GNU GCC ASM 
extension definition, with the exception of advanced operand reference within the assembler 
code (using %[name] construction, available in GCC as of version 3.1).

The syntax of an extended ASM statement is as follows:

asm (

asm string template

[:constraint(output C operand)[,constraint(output C operand)...]]

[:constraint(input C operand)[,constraint(input C operand)...]]

[:clobber[,clobber]]

);

The first colon separates the ASM string template from the first output operand. The second 
colon separates the last output operand from the first input, if any. If there are no output 
operands, but there are input operands, the programmer must place two consecutive colons 
surrounding the place where the output operands would normally be listed. Commas 
separate the operands within each group.

An ASM statement consists of the following parts discussed in the next three sections:

• ASM string template

• Output operand list followed by input operand list

• Clobber list

 8.2.1 ASM String Template

An ASM string template is a string containing the assembly instructions with %<digit> 
placeholder where the operand should be. Operands are numbered from left to right starting 
from zero as shown in Example 8-2.

Example 8-2 Numbering of operands

asm("AnyReg(%0,%4)" : "=U"(out1), "=U"(out2) : "U"(in1), "U"(in2), 
"U"(in3));

The first output operand (out1), and the third input operand (in3) are referenced within an 
ASM string template. The compiler simply puts real register names in the place of the %digit 
in the ASM string template and then prints the string to the output assembler file. If the ASM 
string template contains invalid assembler instructions, the assembler will report the 
corresponding error. This means that it is up to the programmer to check the validity of the 
ASM string template.

Because the character '%' is a reserved character, to produce it one time in the compiler-
generated assembler code requires "%%" to be specified in the ASM string template.

Multiple instructions in the ASM string template should be separated by "\n\t", that is with 
new-line and tab indicators. In Example 8-3, both of these statements yield the same output 
code:
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Example 8-3 Separating multiple instructions

asm(“AnyReg(%0,%2)\n\tAnyReg(%1,%3)” : "=U"(out1), "=U"(out2) : "U"(in1), 
"U"(in2));

or

asm("AnyReg(%0,%2)

     AnyReg(%1,%3)" : "=U"(out1), "=U"(out2) : "U"(in1), "U"(in2));

 8.2.2 Output Operand List Followed by Input Operand List

Each operand is described by an operand-constraint string followed by the C expression in 
parentheses. The total number of operands is currently limited to 10.

 8.2.2.1 C Expressions

A C expression represents the interface between the assembler operands (which are 
registers) and C operands. A C expression can represent a destination of a value found in an 
assembler register after the execution of the ASM statement block (in case of the output 
operand), initialization expression of an assembler register (in case of the input operand) or 
both (in case of the input-output operand).

 8.2.2.2 Operand-constraint Strings

An operand-constraint consists of the modifier constraint and the simple constraint. 

 8.2.2.2.1 Simple Constraints

Simple constraints declare the kinds of register that can be used as operands. Simple 
constraints available for Cirrus DSP architecture include the following:

• 'a' accumulators ("a0", "a1", "a2", "a3")

• 'b' accumulators ("b0", "b1", "b2", "b3")

• 'x'—one of the 4 X data registers ("x0", "x1", "x2", "x3")

• 'y'—one of the 4 Y data registers ("y0", "y1", "y2", "y3")

• 'i'—one of the 7 index registers (i7 is used by the compiler while i8 - i11 are reserved for 
operating system) ("i0", "i1", "i2", "i3", "i4", "i5", "i6")

• 'U'—any register: accumulator, data or index register; compiler will take the first available

All input operands are assigned to different registers. The same goes for output operands. 
But an output operand can be located in the same register as an input operand, on the 
assumption that the inputs are consumed before the outputs are produced. The input-output 
operands are always assigned to unique registers.

A programmer should declare the operands in a way that there are not too many of them 
demanding different registers of the same kind. For example, there cannot be more than four 
input operands with the 'x' constraint, which means that the following code in Example 8-4 
produces an error, since there are only 4 ‘x’ data registers available:
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Example 8-4 Error due to too many ‘x’ input operands

asm("%0 = %1*%2

     %0 += %3*%4

     %0 += %5*%6" : "=a"(out) : "x"(in1), "x"(in2), "x"(in3), "x"(in4), 
"x"(in5), "x"(in6));

 8.2.2.2.2 Modifier Constraints

Modifier constraints define operand kind. The modifiers supported by CCC are the following:

• "" (no modifier)—input operand. Indicates that the operand is a read-only. Modifier can 
be omitted only for the operands in the input operand list. The value of the C expression 
of the input operand will be its initial value.

• "="—output operands. Indicates that the operand is a write-only. This modifier can be 
used only for the operands in the output operand list. A C expression of the output 
operand must be the  lvalue. After execution of the ASM statement block, the value of 
the output operand is stored in the C expression.

• "+"—input-output operands. Provides a way to declare a read-write operand. This 
modifier can be used instead of a "=" modifier. C expression of the input-output operand 
will initiate the operand and the same expression is also be the destination of the 
operand's final value.

• "&"—early clobber operand. Assuming that the inputs are consumed before the outputs 
can be a false assumption if the assembler code actually consists of more than one 
instruction. In this case, the "&" modifier can be used to specify an output operand, 
which should not be in the same register as any input operand or to specify an input 
operand, which should not be in the same register as any output operand. 

Suppose that in this small example:

asm("AnyReg(%0,%2)/n/tAnyReg(%1,%3)" : "=U"(out1), "=U"(out2) : "U"(in1), 
"U"(in2));

out1 is made to take the value of “in1” and out2 the value of “in2.” The operands 0 and
3 can be assigned to the same register because one is input and the other is an
output operand. Then, the generated assembler code would look like this:

AnyReg(a0,a1)

AnyReg(a1,a0)

Thus, after execution of the ASM statement block, the value of operand 3 (in2) will not be in 
operand 1 (out2). Write the ASM statement as follows:

asm("AnyReg(%0,%2)/n/tAnyReg(%1,%3)" : "=&U"(out1), "=U"(out2) : "U"(in1), 
"U"(in2));

or

asm("AnyReg(%0,%2)/n/tAnyReg(%1,%3)" : "=U"(out1), "=U"(out2) : "U"(in1), 
"&U"(in2));

would solve the problem and the output assembler code looks like this:

AnyReg(a0,a1)
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AnyReg(a1,a2)

which produces the desired result.

Note: Writing “&” does not obviate the need to write “=”.

Another way of declaring input-output operands is to write a digit as a constraint for an input 
operand. The digit used must be a reference to an already declared output operand. This 
enables the programmer to logically split an input-output operand into two separate 
operands, one input operand and one output operand. This approach allows the initialization 
and destination expression of an operand to be different. Here are two examples that 
illustrate the difference between the two ways of declaring input-output operands. See 
Example 8-5.

Example 8-5 Example 1 declaring input-output operands

int foo ()

{

int to = 2;

asm("%0 = %0 + (5)" : "+i"(to));

return t0;

}

The value of the variable in Example 8-5, after execution of the ASM statement, is 7. 

But, in Example 8-6,

Example 8-6 Example 2 declaring input-output operands

int to = 2;

int ti = 3;

asm("%0 = %0 + (5)" : "=i"(to) : "0"(ti));

The value of the variable ti, which is 2 in this example, is used for initialization of the %0 
operand. The value in the to variable is 8.

 8.2.3 Clobber List

A clobber list is a list of registers that are implicitly used or changed by assembler instructions 
used in the ASM statement. In Example 8-7, the compiler does not know that registers a0 
and a1 are actually used, or as in this case, changed. 

Example 8-7 No clobber list

asm("AnyReg(a0,%0)\n\tAnyReg(a1,%1)" : : "a"(1), "a"(2));

The compiler's assembler output looks like this:

AnyReg(a1,a0)

AnyReg(a0,a1)
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Thus, the value 1 ends up in both registers, instead of value 1 in a0 and value 2 in a1. Any 
value that can have resided in  register a0 or register a1 before the ASM statement execution 
would be corrupted, and all the variables that were assigned to those registers would also be 
corrupted.

With usage of the clobber list, the above example would look like this:

Example 8-8 Using a clobber list

asm("AnyReg(a0,%0)\n\tAnyReg(a1,%1)" : : "a"(1), "a"(2) : "a0", "a1");

The compiler determines that registers a0 and a1 are implicitly used and it would maintain the 
consistency of all variables. Additionally, it does not assign registers a0 and a1 to any of the 
ASM statement operands.

Registers that can be stated in a clobber list are:

"a0", "a1", "a2", "a3", "b0", "b1", "b2", "b3" (all accumulators)

"x0", "x1", "x2", "x3", "y0", "y1", "y2", "y3" (all data registers)

"i0", "i1", "i2", "i3", "i4", "i5", "i6" (first seven index registers)

It is not advisable for the programmer to use assembler instructions that change the other five 
index registers (i7-i11). Because the five index registers are never assigned to any operand, 
there is no need to put them in the clobber list.

A typical use of the ASM statement is to create a C-callable assembly function. Example 8-9 
shows how _asmfunc (an assembly function) can be called from func() in C. Function 
_asmfunc expects parameters in a0 (count), i0 (dest) and x0 (src), while it returns a value in 
a0 and changes i3 and y2 during its execution.

Example 8-9 _asmfunc called from C func()

int func (int* src, int* dest, int count)

{

int result;

asm("

\tx0=%1; a0=+%3

\ti0=%2

\tcall _asmfunc

\t%0=+a0"

: "=a"(result)

: "y"(src), "y"(dest), "a"(count)

: "a0", "i0", "i3", "x0", "y2");

return result;

}

int main()

{

int from[100], to[100];

return func(from, to, 100);
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Chapter 9

9Optimizing C Code Targeted for Cirrus Logic DSPs

 9.1 Overview
This chapter describes steps to develop C code for optimal performance when running on the 
Cirrus Logic DSP.

Section 9.2 describes coding guidelines that a developer should use to create a new C 
language-based application optimized for the Cirrus Logic DSP platform.

Section 9.3 describes a methodology for taking an existing C-language application and 
turning it into an executable that runs on a Cirrus Logic DSP. 

 9.2 C-Language Coding Guidelines
Follow the coding guidelines described in this section in order to generate an executable file 
targeted for Cirrus Logic DSPs. The coding guidelines are based on the requirements of the 
CCC and the Cirrus Logic DSP hardware platform. The coding guidelines cover the following 
topics:

• General coding guidelines (Section 9.2.1)

• CCC-specific and Cirrus Logic DSP coding guidelines (Section 9.2.2)

 9.2.1 General Coding Guidelines

Follow these general coding guidelines in order to develop application code that the CCC can 
compile for optimal performance on the Cirrus Logic DSP platform:

1. Reduce the number of arguments that are passed to functions.

Passing arguments always requires additional instructions at the place where the
function is called (to push arguments on the stack or store in registers) and at the
beginning of the function body (to pop arguments off the stack or read from registers). In
the case of a defined symbol or a global variable, the value of the global variable is used
directly in place where it is needed.

Passing arguments is especially costly when passed via stack. To know in which cases
this is happening, see the description of the calling convention in Section 7.2. Also,
when option -emit-hints is turned on, compiler reports all function calls where stack is
being used for passing arguments. Try changing the code so that there are no reports of
stack usage for argument passing. Alternatively, consider the option -fnfs.
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 Example 9-1 Convert Function Parameters to Global Variables or Defined Symbols

int foo (int window_size, int sample_rate, int number_of_channels)

Optimized example:

#define window_size 512

int sample_rate 32000;

#define number_of_channels 7

int foo (); 

2. Eliminate instances where structures are passed as function arguments, either by value 
or by pointer.

When a structure is passed by value, make the structure global, and access the
structure’s fields directly within the function body, rather than passing it in the parameter
list.

In Example 9-1, some function parameters are converted to global variables or defined
symbols. In Example 9-2, structures are made global. In Example 9-3, structure pointer
passing is eliminated.

See Section 7.2 for a description of how arguments passed in code are compiled by the
Cirrus Logic C-Compiler.

 Example 9-2 Make Structures Global

          int foo (t_lvl_mod_cfg S)

          {

          ...

         x = S.scale_factor;

         ...

          }

          Optimized example:

           t_lvl_mod_cfg g_S;

          int foo ()

          {

         ...

         x = g_S.scale_factor;

       ...

          }

Accessing a structure field through a pointer is slightly less efficient than using direct
access. In the case when a pointer to a structure is passed to a function, check to see if
the function is always called with a pointer to that structure, or if the function can take
different pointers to different structures. If the same pointer is always passed, then the
pointer passing can be removed, and the structure accessed directly in the body of the
function.

 Example 9-3 Eliminate Structure Pointer Passing

          int foo (t_lvl_mod_cfg* pS)
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{

...

x = pS->scale_factor;

...

}

void main ()

{

...

return foo (&g_S);

}

Optimized example:

int foo ()

{

...

x = g_S.scale_factor;

...

}

When the passing of a structure as argument is a must, keep in mind that passing a structure 
pointer is more efficient than passing a structure by value. Passing by value uses local stack 
for that argument while field access is equally inefficient. When option
-emit-hints is on, compiler reports function calls where stack is being used for passing 
structures by value. Change those functions so that structure pointer is passed or consider 
using -fnfs option.

 9.2.2 CCC and Cirrus Logic DSP-specific Optimizations

There are five types of optimizations for the C-Compiler and Cirrus Logic DSPs: 

• Create loops that can be implemented as hardware loops (Section 9.2.2.1).

• Change the method of accessing arrays (Section 9.2.2.2).

• Increase the efficiency of comparison code (Section 9.2.2.3).

• Copy whole structures or parts of structure that are contiguous in memory (Section 
9.2.2.4).

• Avoid using large switch statements or if-else constructions (Section 9.2.2.5).
DS811UM15 9-3
 



Optimizing C Code Targeted for Cirrus Logic DSPs
Cirrus Logic C-Compiler User’s Manual

9

 9.2.2.1 Create Loops That Can Be Implemented as Hardware Loops

The CCC will translate to hardware loops only those loops for which it can calculate the 
number of iterations in compile-time. The loops that have a compile-time determinable 
number of iterations we will call "fixed-iterations loops". Of all possible fixed-iterations loops 
written in C, the CCC can only calculate the number of iterations for some cases. General 
guidelines for writing loops that the CCC can translate into hardware loops are:

• The loop boundaries must not change during the loop execution.

• The loop index must be updated only by addition or subtraction of a constant value.

• The loop index must not be updated in a conditional statement.

If you write a fixed-iterations loop which is not being translated to a hardware loop, turn on -
emit-hints option, and see what the compiler reports for that loop. You should get precise 
reasons why the compiler cannot handle that particular loop as a hardware loop.

There are two groups of fixed-iterations loops. One group contains loops that have a constant 
number of iterations. Another group contains loops that have a number of iterations that 
varies between different evocations of the loop but is fixed once the loop starts execution 
(Example 9-8). The translating of the second group of loops to hardware loops is possible 
only when the -funsafe-loop-optimization option is on. That option lets the compiler assume 
that the number of iterations in such loop is never going to be 0. That assumption enables the 
compiler to safely translate those loops into hardware loops.

Here are several examples of loops that the CCC can successfully translate into hardware 
loops:

 Example 9-4 Example 1 of loop that can be implemented as hardware loop by CCC

int foo ()

{

int i, sum = 0;

for (i = 0 ; i < 10 ; i++)

sum += array1[i] + array2[i];

return sum;

}

 Example 9-5 Example 2 of loop that can be implemented as hardware loop by CCC

int foo ()

{

int i, sum = 0;

for (i = -5 ; i < 5 ; i+=2)

sum += array1[i] + array2[i];

return sum;

}

 Example 9-6 Example 3 of loop that can be implemented as hardware loop by CCC

#define win_size 512

int foo ()
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{

int i, sum = 0;

for (i = 0 ; i < win_size ; i++)

sum += array1[i] + array2[i];

return sum;

}

 Example 9-7 Example 4 of loop that can be implemented as hardware loop by CCC

int foo ()

{

int i, sum = 0;

for (i = 0 ; i < 1024 ; i *= 2)

sum += array1[i] + array2[i];

return sum;

}

 Example 9-8 Example 5 of loop that can be implemented as hardware loop by CCC

int foo (int n)

{

int i, sum = 0;

for (i = 0 ; i < n ; i *= 2)

sum += array1[i] + array2[i];

return sum;

}

This only works if the -funsafe-loop-optimizations option is on.
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 9.2.2.2 Change the Method of Accessing Arrays

Access arrays using pointers instead of square bracket indexing.

Square bracket indexing is undesirable because it creates the index as a regular integer. 
Every time the array is accessed the value of the index is added to array's base address to 
obtain the address of a particular element in the array. 

By using pointers to access the array, as shown in Example 9-9, the Cirrus Logic DSP’s AGU 
is utilized along with index register update instructions to optimize array access. 

 Example 9-9 Use Pointers to Access Arrays

int foo ()

{

int i, sum = 0;

for (i = 0 ; i < 10 ; i++)

sum += array1[i] + array2[i];

return sum;

}

Optimized example:

int foo ()

{

int i, sum = 0;

int* p_array1 = array1;

int* p_array2 = array2;

for (i = 0 ; i < 10 ; i++)

sum += *p_array1++ + *p_array2++;

return sum;

}

There are cases when compiler is smart enough to recognize square bracket indexing and 
change it to pointer addressing at compile time. For this to work, the conditions described in 
Table 9-1 have to be met:

Example 9-10 provides an example of square bracket indexing where it is not necessary to change 
to pointer addressing, while still producing optimal code:

Table 9-1. Conditions for Translating Square Bracket Indexing into Pointer Addressing

Conditions
Unsuccessful Addressing

Translation

Condition 1: Array square bracket indexing must be inside a loop. Example 9-11
Condition 2: The loop must be such that the compiler can translate it to a hardware loop. Example 9-12
Condition 3: The loop iteration variable must be used for array indexing. Example 9-13
Condition 4: Array must be one-dimensional. Example 9-14
9-6 DS811UM15
 



Optimizing C Code Targeted for Cirrus Logic DSPs
Cirrus Logic C-Compiler User’s Manual

9

 Example 9-10 Use Pointers to Access Arrays

int foo ()

{

int i;

int sum = 0;

for (i = 0; i < 10 ; i++)

   sum += array1[i] + array2[i];

return sum;

}

Example 9-11 to Example 9-14 show situations where it is necessary to use a pointer instead 
of a square bracket indexing is needed:

 Example 9-11 Condition 1 (square bracket indexing must be inside a loop) not 
satisfied (Error noted in Red)

int foo ()

{

int i;

int sum;

sum += array1[i] + array2[i]; <square bracket indexing is not in a loop>

return sum;

}

 Example 9-12 Condition 2 (loop must be such that the compiler can translate it to a 
hardware loop) is not satisfied (Error noted in Red)

int foo ()

{

int i = 0;

while (0 == array[i]); <loop cannot be translated to hardware loop>

i += 1;

return array[i];

}

 Example 9-13 Condition 3 (loop iteration variable must be used for array indexing) is 
not satisfied (Error noted in Red)

int foo ()

{

int i, sum = 0, j = 0;

for (i = 0 ; i < 10 ; i++)

sum += array[j++]; <i must be used for indexing>

return sum;

}

 Example 9-14 Condition 4 (array must be one-dimensional) is not satisfied (Error 
noted in Red)

int foo ()

{
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int i;

int sum = 0;

for (i = 0; i < 10 ; i++)

sum += array1[i][0]; <array is not one dimensional>

return sum;

}

 9.2.2.3 Increase the Efficiency of Comparison Code

When comparing two variables and subtracting them, there could be an overflow. The CCC 
handles overflows by preparing the values (sign extending and dividing by 2) prior to 
subtraction. Example 9-15 illustrates this problem.

 Example 9-15  Comparing variables

#include <stdfix.h>

int foo (long accum a , long accum b)

{

if (a >= b)

return 1;

else

return 0;

}

.code_mpm 

 # Function : _foo

_foo 

a0 = a0 >> 1

a1 = a1 >> 1

Label_1073741826 

a0 = a0 - a1

if(a>=0) jmp Label_0

uhalfword(a0) = (0)

jmp (__foo_END)

Label_0 

uhalfword(a0) = (1)

__foo_END 

ret

.public _foo

In Example 9-15 there are two instructions that are used only to prepare the values in the 
accumulators for subtraction. In cases when it is certain that there will be no overflow, the 
code in Example 9-16 can be used and the two instructions can be eliminated.

 Example 9-16  Shorter assembler output code

#include <stdfix.h>
9-8 DS811UM15
 



Optimizing C Code Targeted for Cirrus Logic DSPs
Cirrus Logic C-Compiler User’s Manual

9

int foo (long accum a , long accum b)

{

if (a - b >= 0)

return 1;

else

return 0;

}

.code_mpm 

 # Function : _foo

_foo 

Label_1073741824 

a0 = a0 - a1

if(a>=0) jmp Label_0

uhalfword(a0) = (0)

jmp (__foo_END)

Label_0 

uhalfword(a0) = (1)

__foo_END 

ret

.public _foo

 9.2.2.4 Copy Whole Structures That Are Contiguous In Memory

Copy whole structures or parts of structure that are contiguous in memory.

 Example 9-17 Copying structures, excluding fields that maintain their values

struct S {

  int a, b, c, d, e, f, g;

};

typedef struct S tS;

...

tS X, Y;

...

X.a = Y.a;

X.b = Y.b;

X.c = 1;

X.d = Y.d;

X.e = Y.e;

X.f = 0;

X.g = Y.g;

...

Optimized code:

...

X = Y;
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X.c = 1; //Excluding c,f to maintain their values

X.f = 0;

...

 Example 9-18 Rearranging fields in a structure 

struct S {

  int a, b, c, d, e, f, g;

};

typedef struct S tS;

...

tS X, Y;

...

X.a = Y.a;

X.b = Y.b;

X.d = Y.d;

X.e = Y.e;

X.g = Y.g;

...

//Difference here is that fields c and f are not set, but need to maintain 
//their previous value instead)

Optimized code:

struct S {

  int a, b, d, e, g, c, f; // Note reordering of the fields

};

typedef struct S tS;

...

tS X, Y;

...

int i;

int* tmpX = &(X.a);

int* tmpY = &(Y.a);

for (i = 0 ; i < 5 ; i++)

  *tmpX++ = *tmpY++;

...

In Example 9-17 and Example 9-18, a hardware loop with two instructions is used. In
the optimized code, copying any number of fields is translated into five instructions:

• Two instructions for pointer setting

• One for a do instruction

• Two for a loop body. 

With the unoptimized code, copying a single field produces two instructions each. For
example, copying five fields, field by field, produces ten instructions.

Notice that the coding examples shown in Example 9-17 and Example 9-18 are
optimized for code size only, where code size = number of instructions. Code optimized
for size uses less program memory, but the actual code run is 3 instructions longer.
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 9.2.2.5 Avoid Using Large Switch Statements or If-else Constructions 

Try to simplify conditional logic whenever possible. Avoid large switch statements or if-else 
constructions when writing code to take advantage of the Cirrus Logic DSP’s calculation 
ability. When programming in Assembly language, the necessity of simplifying conditional 
logic is obvious. But, when writing C Language applications, the programmer can focus on 
complying with standard C Language coding conventions, rather than the impact of the 
code’s implementation on the operation of the DSP.

 Example 9-19 Changing a switch statement into an array

enum OutputConfig { OUT_MONO, OUT_STEREO, OUT_4CH, OUT_3_1CH, OUT_5_1CH, 
OUT_5CH, OUT_7CH };

...

switch (output_type)

{

case OUT_MONO:

  value = 0x7a;

  break;

case OUT_STEREO:

  value = 0x82;

  break;

case OUT_4CH:

  value = 0xEB;

  break;

case OUT_3_1CH:

  value = 0x11;

  break;

...

}

Optimized code:

enum OutputConfig { OUT_MONO, OUT_STEREO, OUT_4CH, OUT_3_1CH, OUT_5_1CH, 
OUT_5CH, OUT_7CH };

int OCArray [7] = {0x7a, 0x82, 0xEB, 0x11 ... };

...

value = OCArray[output_type];

 9.3 Optimizing an Existing Application to Run on Cirrus DSPs
This section describes a methodology for implementing an existing C programming language 
application on one of the Cirrus Logic DSPs. The implementation process starts with an 
application written in C that is submitted by or obtained from an application developer. The 
final goal is to compile the developer’s optimized C code and turn it into an executable file 
running on the Cirrus Logic DSP. 

This methodology comprises a series of incremental porting steps, Phase 1 through Phase 5:

• Phase 1: Developer Submits C-Code

• Phase 2: Make general code optimizations such as reducing the number of function 
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• Phase 3: Convert data types to data types supported by the Cirrus Logic DSP 
Architecture and optimize Developer’s C-Code for 32-bit precision and fixed-point 
arithmetic functionality

• Phase 4: Apply Target and Assembly compiler-specific modifications to the code

• Phase 5: Create and test downloadable code by doing the following:

• Integrate code into the Cirrus Logis OS framework environment

• Further utilization and optimization activities

• Verify implementation

 9.3.1 Phase 1: Developer Submits Initial C Code Application

A developer creates an application in the C programming language. This code is considered 
the “golden” code and is used to validate Phase 2 to Phase 5 code.

 9.3.2 Phase 2: Make General Code Optimizations

Make the optimizations described in Section 9.2.
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 9.3.3 Phase 3: Convert Data Types to Data Types Supported by the 

Cirrus Logic DSP Architecture

Applications implemented in C programming language often support several types of 
precision, and both floating-point, and fixed-point arithmetic. Cirrus Logic DSP architecture 
requires that all arithmetic be 32-bit precision and fixed-point. Section 9.3.3.1 describes how 
to make the needed conversions. After the data-type conversions are made in the C code, 
the resulting code can be validated against the golden output and serves as the code that is 
optimized in Phase 3.

 9.3.3.1 Convert C-Code Floating-point to Fixed-point Arithmetic

In the original C code, fixed-point arithmetic is often emulated in some way, for example, by 
using special kind of functions and macros on integer or floating-point types. Compiling the 
emulation of arithmetics yields highly inefficient executable code, so Phase 1 code must be 
modified to use fixed-point types specified by the Embedded C Extensions.1 The C 
Extensions fixed-point types are not supported by Microsoft Visual Studio. Code using the C 
Extensions can be difficult to run and debug. This issue can be solved by relying on C++ 
classes to emulate Embedded C specific fixed-point data types.

See  Chapter 3, "Data Types" for a description of the fixed-point types that the CCC supports. 
Of the supported types, two types are most efficient:

• fract - a type which represents a 32-bit value (memory location width and data register), 
and

• long accum - representing a 72-bit value (accumulator)

 9.3.4 Phase 4: Apply Target and Assembly Compiler-specific 
Modifications to the Code

Phase 3 code is the code that can be fully translated into the assembly file. Phase 3 code 
needs to be modified by applying compiler and target-specific code, in most cases directly in 
the assembler.

For example, CCC compiled code can differ from Microsoft Visual Studio compiled code in 
type conversion from integer to fixed-point or vice versa.

Consider this piece of code:

fract f = FRACT_NUM(0.34999999962747097015380859375);

int result;

result = f;

In Microsoft Visual Studio, the compiled result is 0x2CCCCCCC.

When compiled by the CCC, the result is 0.

1. ISO/IEC TR 18037:2004, “C -- Extensions to Support Embedded Processors” can be obtained at http://www.iso.org/iso/iso_catalogue/catalogue_tc/cat-

alogue_detail.htm?csnumber=30822
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To achieve the same behavior in the CCC as in the case of Microsoft Visual Studio, 

fract f = FRACT_NUM(0.34999999962747097015380859375);

int result;

#ifndef __CCC

// Microsoft Visual Studio branch

result = f;

#else

// CCC Branch branch

asm("%0 = %1" : "=a"(result) : "a"(f));

#endif

Note: To ensure maximal mathematical accuracy for a line of C code that encapsulates more 
than one type of mathematical operation and data type, read Section 3.6.1.

 9.3.5 Phase 5: Create and Test Downloadable Code

Create downloadable code by doing the following:

• Integrate code into the Cirrus Logic framework environment, for example, by using the 
CLIDE buildable project template.

• Use DSP Composer to download the .uld and test.

• Use CLIDE to debug.

For more detailed information about creating downloadable code, refer to the 32-bit DSP 
Assembly Programmer’s Guide.
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10Known Issues in CCC

In the 6.5 release of CCC, the following issues are known to exist.

 10.1 Sequence Point Before Function Call
Consider the following code:

int a = 5;

int bar(int x)

{

if (5 == x && 6 == a)

    return 1;

return 0;

}

int main()

{

    return bar(a++);

}

The return value of function main should be 1. Side-effect should be executed after 
parameter preparation but before the actual function call.

CCC will calculate side-effects after the function call. Therefore, main will return a value of 0. 
The value in a will still be incremented, but after the function call.

 10.2 Externalized Inline Functions
Functions that are declared with inline attribute, while also being externalized, might cause 
problems when whole program optimization (-wpo switch) is performed. The program may 
not compile.

 10.3 Problems with More Flexible Array Initialization from C99
More flexible array initialization syntax example:

int x[5] = {[2] = 2, [4] = 3};

This results in array x being initialized with 0, 0, 2, 0, 3. More flexible array initialization that is 
introduced in C99 is not supported by CCC, and the appropriate error message will be 
reported if that kind of initialization is encountered. However, in some cases the error will not 
be reported, and the compilation will be completed, but it will have the incorrect initialization. 
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Problem cases are characterized by using flexible array initialization for structure members 
that are arrays.

 10.4 Overflow when Using Abs Function for Fixed Point Types
According to language standards, abs functions for fixed point types (absr, abslk, abshr...) 
are supposed to saturate on overflow. Implementation of those functions in CCC will not 
saturate in case of overflow. Functions are implemented in a highly efficient manner, and the 
saturation on overflow will reduce that efficiency. This is actually not a bug, but a choice of 
implementation.

The only case of overflow is if input is the lowest negative value of a type. If it is important to 
have saturation on overflow, check if value of the input is the lowest negative value before the 
actual call of the abs function. A future release of CCC will add versions of abs functions that 
do perform saturation on overflow.

 10.5 Saturated Fixed Point Type Unary Negation Does Not Saturate
For saturated fixed point type (declared with _Sat), unary negation should saturate. It will not 
saturate in CCC. Use “0 – x” construction if you want saturation to occur.

 10.6 Multiplication of Unsigned Saturated Short Accum Type with 
Signed Integer Produces Wrong Code

Avoid such expressions.
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UM13 March, 2013
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0Support of Standard Libraries

Appendix A-1. Support of Standard Libraries

Support Note

Standard C

assert.h PARTIAL
On false assert, no info about the file and line are emitted. The program exits with a non-zero 
return value.

complex.h NONE

ctype.h NONE

errno.h NONE

fenv.h NONE

float.h NONE

inttypes.h NONE

iso656.h FULL

limits.h FULL The limit of long long type are currently the same as the limits for int. Refer to Section 1.2.

locale.h NONE

math.h NONE

setjmp.h NONE

signal.h NONE

stdarg.h NONE

stdbool.h FULL

stddef.h FULL

stdint.h FULL Exception for long long type and parts related to signal.h and wchar.h.

stdio.h PARTIAL Only the putchar function is supported. It works in a single core simulator.

stdlib.h PARTIAL
Only abort, exit, abs, and labs function are supported. Itoa is also declared in stdlib.h, although it is 
not standard C function.

string.h PARTIAL
Only memcpy, memset, strcpy, strcmp, and strlen functions are supported. There are also 
additional non-C standard versions of those functions for different memory zones.

tgmath.h NONE

time.h NONE
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The following is a list of all functions implemented as part of standard libraries.

• Functions in stdio.h

int putchar(int c);

• Functions in stdlib.h

void abort(void);

void exit(int status);

int abs(int j);

long int labs(long int j);

• Functions in stdlio.h

void* memcpy(void* dest, const void* src, size_t n);

__memX void* memcpy_x2x(__memX void* dest, const __memX void* src, size_t n);

__memY void* memcpy_x2y(__memY void* dest, const __memX void* src, size_t n);

__memY void* memcpy_y2y(__memY void* dest, const __memY void* src, size_t n);

__memX void* memcpy_y2x(__memX void* dest, const __memY void* src, size_t n);

__memXY void* memcpy_xy2xy(__memXY void* dest, const __memXY void* src, 
size_t n);

char* strcpy(char* dest, const char* src);

__memX char* strcpy_x2x(__memX char* dest, const __memX char* src);

__memY char* strcpy_y2y(__memY char* dest, const __memY char* src);

__memY char* strcpy_x2y(__memY char* dest, const __memX char* src);

__memX char* strcpy_y2x(__memX char* dest, const __memY char* src);

int strcmp(const char* cs, const char* ct);

void* memset(void* d, int c, size_t n);

__memX void* memset_x(__memX void* d, int c, size_t n);

__memY void* memset_y(__memY void* d, int c, size_t n);

size_t strlen(const char* s);

size_t strlen_x(const __memX char* s);

size_t strlen_y(const __memY char* s);

wchar.h NONE

wctype.h NONE

Embedded C Extension

stdfix.h PARTIAL

The following groups of functions are not supported (chapters numbers are from ISO/IEC TR 
18037 document specifying Embedded C extension):

• The fixed-point arithmetic operation support functions from chapter 7.18a.6.1
• The fixed-point rounding functions from chapter 7.18a.6.3
• The fixed-point countls functions from chapter 7.18a.6.4
• Type-generic fixed-point functions from chapter 7.18a.6.7

iohw.h NONE

Appendix A-1. Support of Standard Libraries

Support Note
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• Functions in stdfix.h

• Absolute value functions for fixed-point types:

short fract abshr(short fract f);

fract absr(fract f);

long fract abslr(long fract f);

short accum abshk(short accum f);

accum absk(accum f);

long accum abslk(long accum f);

• Bitwise conversion from a fixed-point type to an integer type (definitions of return 
types are given in stdfix.h):

int_hr_t bitshr(short fract f);

int_r_t bitsr(fract f);

uint_uhr_t bitsuhr(unsigned short fract f);

uint_ur_t bitsur(unsigned fract f);

• Bitwise conversion from an integer type to a fixed-point type (definitions of argument 
types are given in stdfix.h):

short fract hrbits(int_hr_t n);

fract rbits(int_r_t n);

unsigned short fract uhrbits(uint_uhr_t n);

unsigned fract urbits(uint_ur_t n);

• Functions for setting and getting mr_sr register (refer to Section 3.3.2):

void set_mr_sr(int x);

void set_mr_r(int x);

void set_mr_s(int x);

int get_mr_sr();

int get_mr_r();

int get_mr_s();

• Functions for getting parts of 72-bit wide long _Accum type variable as 32-bit wide 
_Fract type value:

_Fract rgetlo(long _Accum a);

_Fract rgethi(long _Accum a);

_Fract rgetg(long _Accum a);

• Functions for getting parts of 72-bit wide long _Accum type variable as integer type 
value:

int bitsgetlo(long _Accum a);

int bitsgethi(long _Accum a);

int bitsgetg(long _Accum a);
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