CDB5463U Engineering Board and GUI Software

Features
- Voltage and Current Interface
- USB Communication with PC
- On-board C8051F320 Microcontroller
- On-board Voltage Reference
- LabWindows®/CVI® GUI Software
  - Register Setup & Chip Control
  - FFT Analysis
  - Time Domain Analysis
  - Noise Histogram Analysis
- "Auto-boot" Demo with Serial EEPROM

General Description
The CDB5463U is an inexpensive tool designed to evaluate the functionality and performance of the CS5463 analog-to-digital converter (ADC). The evaluation board includes an LT1019 voltage reference, a C8051F320 microcontroller with a USB interface, and firmware. The microcontroller controls the serial communication between the evaluation board and the PC via the firmware, enabling quick and easy access to all of the CS5463's registers and functions.

The CDB5463U includes software for data capture, time domain analysis, histogram analysis, and frequency domain analysis.

Schematics in PADS™ PowerLogic™ format are available for download at www.cirrus.com/IndustrialSoftware.

ORDERING INFORMATION
CDB5463U Evaluation Board
# TABLE OF CONTENTS

1. HARDWARE .................................................................................................................. 3  
   1.1 Introduction ............................................................................................................. 3  
   1.2 Evaluation Board Overview .................................................................................... 3  
   1.3 Analog Section ........................................................................................................ 4  
   1.4 Digital Section ....................................................................................................... 5  
   1.5 Power Supply Section ........................................................................................... 5  
   1.6 Auto-boot Mode .................................................................................................... 6  
2. SOFTWARE .................................................................................................................. 8  
   2.1 Installation ............................................................................................................. 8  
   2.2 Using the Software ............................................................................................... 8  
   2.3 Start-up Window .................................................................................................... 8  
   2.4 Setup Window ....................................................................................................... 12  
   2.5 Calibration Windows ............................................................................................. 14  
   2.6 Conversion Window ............................................................................................. 16  
   2.7 Pulse Rate Window .............................................................................................. 18  
   2.8 Data Collection Window ...................................................................................... 19  
   2.9 EEPROM Window ............................................................................................... 26  
   2.10 Debug Panel ....................................................................................................... 27  
Appendix A. Bill Of Materials ..................................................................................... 28  
Appendix B. Schematics ............................................................................................... 30  
Appendix C. Layer Plots ............................................................................................... 34  

## LIST OF FIGURES

Figure 1. CDB5463U Assembly Drawing ................................................................. 3  
Figure 2. GUI Start-up Window ............................................................................... 8  
Figure 3. Setup Menu Showing Successful USB Connection ..................................... 9  
Figure 4. USB Error Message ................................................................................... 9  
Figure 5. Data from Disc File Selection Window ....................................................... 10  
Figure 6. Menu Pull-down Options .......................................................................... 11  
Figure 7. Quit Dialog ............................................................................................... 11  
Figure 8. Setup Window ........................................................................................... 12  
Figure 9. Calibration Window .................................................................................. 14  
Figure 10. Conversion Window ............................................................................... 16  
Figure 11. Pulse Rate Output Window ................................................................. 18  
Figure 12. Data Collection Window ......................................................................... 19  
Figure 13. Configuration Window ........................................................................... 20  
Figure 14. Histogram Analysis ............................................................................... 22  
Figure 15. FFT Analysis ......................................................................................... 24  
Figure 16. Time Domain Analysis .......................................................................... 25  
Figure 17. EEPROM Window .................................................................................. 26  
Figure 18. Debug Panel ........................................................................................... 27  
Figure 19. Schematic - Analog Inputs ..................................................................... 30  
Figure 20. Schematic - CS5463 & Socket ............................................................... 31  
Figure 21. Schematic - Microcontroller & USB Interface ....................................... 32  
Figure 22. Schematic - Power Supplies ................................................................ 33  
Figure 23. Top Silkscreen ....................................................................................... 34  
Figure 24. Top Routing ............................................................................................ 35  
Figure 25. Bottom Routing .................................................................................... 36  
Figure 26. Bottom Silkscreen ............................................................................... 37
1. HARDWARE

1.1 Introduction

The CDB5463U evaluation board provides a convenient means of evaluating the CS5463 power measurement IC. The CDB5463U evaluation board operates from a single +5V power supply. The evaluation board interfaces the CS5463 to a PC via a USB cable. To accomplish this, the board comes equipped with a C8051F320 microcontroller and a USB interface. Additionally, the CDB5463U GUI software provides easy access to the internal registers of the CS5463. The software also provides a means to display the performance in the time domain or frequency domain.

1.2 Evaluation Board Overview

The board is partitioned into two main sections: analog and digital. The analog section consists of the CS5463 and a precision voltage reference. The digital section consists of the C8051F320 microcontroller, EEPROM, the hardware test switches, the reset circuitry, and the USB interface. The board also has a user friendly power supply connection.

![Figure 1. CDB5463U Assembly Drawing]
1.3 Analog Section

The CDB5463U evaluation board provides screw-type terminals (J23, J27) to connect input signals to the voltage and current channels. The screw terminals are labeled as VIN+, VIN1-, IIN+, and IIN-. A simple R-C network at each channel input provides a simple anti-alias filter.

The evaluation board provides three voltage reference options for VREFIN to the CS5463. The three voltage reference options include: VREFOUT from CS5463, the on-board +2.5V reference, and external REF+ (screw terminal J14). Table 1 and Table 2 illustrate the options available for VREFIN. With a jumper on J25 in the position labeled VREFOUT, the reference is supplied by the on-chip voltage reference. With a jumper on J25 in the position labeled VREF, the reference is supplied by an off-chip voltage reference.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>J25</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREFOUT</td>
<td>Selects On-chip Reference (25 ppm/°C)</td>
<td>VREF ○ VREFOUT ○ (Default)</td>
</tr>
<tr>
<td>VREF</td>
<td>Selects External or LT1019 Reference (J12)</td>
<td>VREF ○ VREFOUT ○</td>
</tr>
</tbody>
</table>

Table 1. Internal Voltage Reference Selection for VREF

Table 2 illustrates the options available for VREF. With a jumper on J12 in position LT1019, the LT1019 provides a +2.5V reference (the LT1019 was chosen for its low drift - typically 5 ppm/°C). By setting the jumper on J12 to position REF+, an external voltage reference is supplied via screw terminal J14’s REF+ input.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>J12</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1019</td>
<td>Selects On-board LT1019 Reference (5 ppm/°C)</td>
<td>LT1019 ○ ○ VREF ○ ○ VREF</td>
</tr>
<tr>
<td>REF+</td>
<td>Selects External Reference Source (J14)</td>
<td>LT1019 ○ ○ VREF ○ ○ VREF (Default)</td>
</tr>
</tbody>
</table>

Table 2. External Voltage Reference Selection for VREF

The three input signal options for the voltage (VIN±) and current (IIN±) channel input include: an external signal (screw terminals J23 and J27), GND, or VREF. Table 3 illustrates the options available. By installing jumpers on J17 to position VIN+, J22 to position VIN-, J24 to position IIN+, and J26 to position IIN-, the input voltage signal is supplied from the screw terminals J23 and J27. With a jumper on J17, J22, J24 and
J26 in the GND position, the inputs are connected to analog ground (AGND). With a jumper on J17, J22, J24 and J26 in position VREF, the inputs are connected to the reference voltage selected on J12.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>Description</th>
<th>J17</th>
<th>J22</th>
<th>J24</th>
<th>J26</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN± or IIN±</td>
<td>Selects External Signal</td>
<td>GND O VIN+</td>
<td>VIN+ O VIN+</td>
<td>GND O IN+</td>
<td>VIN+ O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VREF O VIN+</td>
<td>VREF O VREF</td>
<td>VREF O IN+</td>
<td>VREF O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
<th>Description</th>
<th>J17</th>
<th>J22</th>
<th>J24</th>
<th>J26</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN± or IIN±</td>
<td>Selects External Signal</td>
<td>GND O VIN+</td>
<td>VIN+ O VIN+</td>
<td>GND O IN+</td>
<td>VIN+ O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VREF O VIN+</td>
<td>VREF O VREF</td>
<td>VREF O IN+</td>
<td>VREF O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
<th>Description</th>
<th>J17</th>
<th>J22</th>
<th>J24</th>
<th>J26</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Selects Grounding the Input</td>
<td>GND O VIN+</td>
<td>VIN+ O VIN+</td>
<td>GND O IN+</td>
<td>VIN+ O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VREF O VIN+</td>
<td>VREF O VREF</td>
<td>VREF O IN+</td>
<td>VREF O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
<th>Description</th>
<th>J17</th>
<th>J22</th>
<th>J24</th>
<th>J26</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREFIN</td>
<td>Selects Reference Source</td>
<td>GND O VIN+</td>
<td>VIN+ O VIN+</td>
<td>GND O IN+</td>
<td>VIN+ O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VREF O VIN+</td>
<td>VREF O VREF</td>
<td>VREF O IN+</td>
<td>VREF O IN+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
<td>(Default)</td>
</tr>
</tbody>
</table>

Table 3. Voltage and Current Channel Input Signal Selection

1.4 Digital Section

The digital section contains the microcontroller, USB interface, JTAG header, reset circuitry, and an external interface header (J40). The microcontroller interfaces the SPI of CS5463 with the USB connection to the PC, enabling the GUI software to access all the CS5463 registers and functions. Interface header, J40, is provided to allow the CDB5463U to be connected to an external energy registration device or an external microcontroller. To connect the CS5463 to an external microcontroller, R57, R58, R59, R60, R61, and R62 must be removed from the board. The energy output pins E1, E2, and E3 are routed to LEDs which provide a simple visual check of the energy output pulses. The MODE pin is also routed to a LED to indicate whether the CS5463 is operating in auto-boot mode. Jumpers J10, J13, J15, and J16 are equipped at the factory with jumpers to enable the LEDs.

1.5 Power Supply Section

Table 4 illustrates the power supply connections to the evaluation board. The +5V binding post (J3) supplies the positive analog (VA+) for the CS5463 and the +2.5V reference. The VD+_EXT binding post (J5) supplies the digital section of the CS5463 (VD+) and level shifters. Jumper J8 allows the VD+ supply to be sourced from the VD+_EXT binding post (J5), the +5V binding post (J3), or the regulated 3.3V supply derived from the microcontroller. The Vu+_EXT (J6) binding post supplies the positive supply for the 8051
microcontroller (8051_REGIN). Jumper J9 allows the 8051_REGIN supply to be sourced from either the Vu+_EXT binding post (J6), +5V binding post (J3) or VD+_EXT binding post (J5).

### 1.6 Auto-boot Mode

With a jumper connection on J18 (AUTO-BOOT ENABLE), the CS5463 operates in auto-boot mode and the CDB5463U board operates as a stand-alone system without attaching it up to a PC. When in auto-boot mode, a hardware reset (press on S1) will cause the CS5463 to boot up using the serial data from the serial EEPROM on the board (U10). When the CS5463 is in auto-boot mode, the SPI connections...
between the microcontroller and the CS5463 are removed and the GUI software can not access the CS5463 registers and functions.

The EEPROM must be programmed prior to the auto-boot sequence. When the CDB5463U Evaluation Board is sent from the factory, the EEPROM is programmed with the following CS5463 command/data sequence:

1. Write Mode register, turn high-pass filters on:
   \[0x64 \ 0x00 \ 0x00 \ 0x60\]
2. Unmask bit #2 (LSD) in the Mask register:
   \[0x74 \ 0x00 \ 0x00 \ 0x04\]
3. Start continuous conversion:
   \[0xE8\]
4. Write STOP bit to Control register, to terminate auto-boot sequence:
   \[0x78 \ 0x00 \ 0x01 \ 0x00\]

This sequence programs the CS5463 for continuous conversion mode. If voltage and current signals are applied to the inputs, the CS5463 will issue pulses on the E1 pin. See the CS5463 data sheet for more details on auto-boot.
2. SOFTWARE

The evaluation board comes with software and an USB cable to link the evaluation board to the PC. The evaluation software was developed with LabWindows®/CVI®, a software development package from National Instruments. The evaluation software is available for download on the Cirrus Logic web site at http://www.cirrus.com/industrialsoftware and was designed to run under Windows® 2000 or Windows XP®.

2.1 Installation

To install the software, go to the Cirrus Logic web site at http://www.cirrus.com/industrialsoftware and refer to application note AN278.

2.2 Using the Software

Before launching the software, check all jumper settings on the CDB5463U evaluation board as described in Section 1, and connect the board to an open USB port on the PC using the provided cable. Once the board is powered on, the software program can be launched.

2.3 Start-up Window

When the software is launched, the start-up window will appear. This window contains information concerning the software's title, revision number, copyright date, etc. See Figure 2.

![Figure 2. GUI Start-up Window](image)

At the top of the screen is a menu bar which displays user options. The menu bar has three items: Menu, Setup, and Quit. Initially Menu is disabled. After establishing a link to a data source, the Menu item will become available.
2.3.1 **Setup Menu**

Setup allows user to establish a USB communication connection with CDB5463U board or select a previously saved data file for further analysis.

If the *USB* item in the *Setup* menu is selected, the evaluation software will poll the CDB5463U, verifying the serial communication link is ready. At this point, the *USB* menu item is checked indicating that the PC has successfully communicated with CDB5463U evaluation board, and device and micro-code version information are read from the board and displayed on the screen. See Figure 3. Due to improvements to the software or new features being added, the version displayed may be different than the image shown here.

![CDB5463U Evaluation Board](image)

**Figure 3.** *Setup* Menu Showing Successful USB Connection

If the evaluation software is unable to establish a communication link with the CDB5463U board, a message will appear, indicating that the initial communication has failed. See Figure 4.

![Error Message](image)

**Figure 4.** USB Error Message

Check to verify that the USB cable is connected properly and the power supply is on and connected properly to the CDB5463U. Reset the board (press the *RESET* button on the board) and try to setup the USB connection again.
If the *Data from Disk* item in the *Setup* menu is selected, a file selection window will appear as shown in Figure 5. User can select a pre-saved data file for further analysis using time domain, FFT, and histogram plots in Data Collection Window of the software.

![Data from Disc File Selection Window](image)

**Figure 5. Data from Disc File Selection Window**

### 2.3.2 Menu Menu

Excluding the *Start-Up* window, the *Menu* menu provides 7 options: Setup Window, Calibration Window, Conversion Window, Pulse Rate Window, Data Collection Window, EEPROM Window, and Debug Win-
Each window provides a means to evaluate the different functions and performance of the CS5463. Each option has an associated function key (F1, F2, etc.). See Figure 6.

![Figure 6. Menu Pull-down Options](image)

### 2.3.3 Quit Menu

The Quit menu allows the user to exit the evaluation software. Upon selecting Quit, a message window appears and queries if exiting the evaluation software is desired. See Figure 7.

![Figure 7. Quit Dialog](image)
2.4 Setup Window

The evaluation software provides access to the CS5463's internal registers through the Setup window. See Figure 8. The user can enter the Setup window by pulling down the Menu menu and selecting Setup Window, or by pressing <F2> on the keyboard.

In the Setup window, all of the CS5463's registers are displayed in hexadecimal notation and are decoded to provide easier readability. Refer to the CS5463 data sheet for information on register functionality and definitions. See Figure 8.

Figure 8. Setup Window
2.4.1 Refresh Screen Button

The Refresh Screen button will update the contents of the screen by reading all the register values from the CS5463. It is a good idea to press the Refresh Screen button when entering the Setup window, or after modifying any registers, to reflect the current status of the CS5463.

2.4.2 Reset DUT Button

The Reset DUT button will hardware reset the CS5463. The CS5463 will perform a reset as discussed in the CS5463 data sheet. After the hardware reset to the CS5463 device, the screen contents will be automatically refreshed with the updated status of the CS5463.

2.4.3 CS5463 Crystal Frequency

The CS5463 accepts a wide range of crystal input frequencies, and can therefore run at many different sample rates. The crystal frequency being used on the CS5463 should be entered in this field to provide accurate frequency calculation in the FFT window. This will also help the software decide which functions the evaluation system can perform reliably.

2.4.4 Configuration Register

In the Configuration Register box, the contents of the Config register can be modified by typing a hexadecimal value in the HEX: field, or by changing any of the values below the HEX: field to the desired settings. Although the CDB5463U software allows the user to modify any of the bits in the Config register, changing certain bits may cause the software and board to behave erratically. For the evaluation system to function properly, the Interrupt Output field should be set to the default Active Low. This applies only to the CDB5463U evaluation system, and not to the CS5463 chip itself.

2.4.5 Temperature, Voltage SAG, Current Fault Registers

These fields display the values of the corresponding registers in both hexadecimal and decimal format. Each register can be modified by typing a value in the corresponding offset, level, duration, or gain value field (decimal) or HEX: field (hexadecimal).

2.4.6 Mask Register / Status Register

The Mask Register / Status Register box displays the values for these registers in hexadecimal and decodes them to indicate each bit's function. The Mask register can be modified by typing a value in the HEX: field, or by checking the appropriate check boxes for the bits that are to be masked. The Status register cannot be directly modified. It can only be reset by pressing the Clear Status Register button. The HEX: field for this register and the lamps are indicators only. A lamp which is on means that the corresponding bit in the Status register is set (except the Invalid Command bit, which is inverted). The value present in the Mask register may be changed by the software during certain operations to provide correct functionality of the CDB5463U board.

2.4.7 Cycle Count / PulseRateE Register

These fields display the values of the corresponding registers in both hexadecimal and decimal format. Each register can be modified by typing a value in the corresponding Value: or HEX: field.
2.4.8 Control Register

The Control Register box contains various bits used to activate or terminate various features of the CS5463. Refer to the CS5463 data sheet for descriptions of the bits. The user is able to turn each bit on or off individually. The value of the Ctrl register is displayed in the HEX field. Most of the Ctrl register bits are reserved or unused. Only the usable bits are displayed in the Setup window.

2.4.9 Operational Modes Register

The Operational Modes Register box contains various bits used to set different operation modes for the CS5463 functions. Refer to the CS5463 data sheet for descriptions of the bits. The value of the Mode register is displayed in the HEX field. Many of the Mode register bits are reserved or unused. Only the usable bits are displayed in the Setup window.

2.5 Calibration Windows

The Calibration window is used to display and write to the CS5463 offset and gain calibration registers. The user is also able to initiate the CS5463’s calibration sequences that are used to set the calibration values. Both AC and DC calibrations can be performed for offset and gain, for either the voltage channel or the current channel, or both simultaneously. The user should refer to the CS5463 data sheet for more details on calibration.

The Refresh Screen button will update the contents of the screen by reading all the register values from the CS5463. It is a good idea to press the Refresh Screen button when entering the Calibration window, or after modifying any registers to reflect the current status of the CS5463.

![Calibration Window](image-url)

*Figure 9. Calibration Window*
2.5.1 Offset / Gain Register

In the Offset & Gain fields, the offset and gain registers for both channels are displayed in hexadecimal and decimal formats. These registers can be modified directly by typing the desired value in the hexadecimal display fields. There are two types of offset registers: DC offset and AC offset. The AC Offset register only affects the RMS register values. The DC & AC offset registers are two's complement numbers whose values ranges from -1 to +1. The gain register value ranges from 0 to 4.

2.5.2 Performing Calibrations

Offset and gain calibrations can be performed on both the voltage and current channels of the CS5463. Because the initial values in the calibration registers will affect the results of the calibrations, it is generally a good idea to software reset the CS5463 before running calibrations. A software reset will reset these registers back to the default values of zero offset and unity gain. Offset calibration should be performed before gain calibration to ensure accurate results.

2.5.2.1 Offset Calibrations

1. Ground the channel(s) you want to calibrate directly at the channel header(s) J17 and J22 for the voltage channel, and J24 and J26 for the current channel. The channel(s) could also be grounded directly at the screw terminals.

2. Press the corresponding AC or DC offset calibrate button (Cal V, Cal I, or Cal Both) beside or below the corresponding offset registers fields.

The calibration value(s) will automatically update when the calibration is completed.

2.5.2.2 Gain Calibrations

1. Attach an DC or AC calibration signal to the screw terminals, and make sure the corresponding channel headers (J17, J22, J24, and J26) are set to the input position.

2. Press the corresponding AC or DC gain calibrate button (Cal V, Cal I, or Cal Both) beside or below the Gain Registers fields.

The calibration value(s) will automatically update when the calibration is completed.

The Calibration Window also contains the Power Offset Register display and adjustment. The user can read and write the value in the power offset (Poff) register.
2.6 Conversion Window

The Conversion Window allows the user to see the results of single and continuous conversions, perform data averaging, and utilize the power-saving modes of the CS5463. See Figure 10. The Conversion Window can be accessed by pulling down the Menu option, and selecting Conversion Window, or by pressing F4.

![Conversion Window](image)

**Figure 10. Conversion Window**

2.6.1 Single Conversion Button

Pressing this button will cause a single conversion to be performed. After a single conversion is complete, the Result column will be updated with the values present in each data register.

2.6.2 Continuous Conversion Button

Pressing this button will cause continuous conversions to be performed until the user presses the Stop button. After each conversion is complete, the Result column will be updated with the values present in each data register. The Mean and Standard Deviation columns will be updated every N cycles, where N is the number in the Samples to Average field. If the Samples to Average is set to a large number, it may take many collection cycles after pressing the Stop button before the data actually stops being collected.
2.6.3  **Standby / Sleep Mode Buttons**

When these buttons are pressed, the CS5463 will enter either standby or sleep power saving modes. To return to normal mode, press the *Power Up* button.

2.6.4  **Power Up Button**

This button is used to send the *Power Up/Halt* command to the CS5463. The part will return to normal operating mode and halt any conversions that are being done at this time.

2.6.5  **Temperature Settings Window**

The *Temperature Settings Window* is used to adjust the temperature offset register (Toffset) and temperature gain register (Tgain) to convert the temperature register (T) from a Celsius scale (°C) to a Fahrenheit scale (°F) or vice versa and to improve temperature measurement accuracy. Refer to the CS5463 data sheet for the details of the on-chip temperature sensor.

2.6.6  **Write Data to File Window**

This window provides a means to write the conversion result data to a .txt text file for later analysis or print out. The file path and name will be shown in *Filename* field. The *Open File* button is used to open a new or existing .txt text file for data writing. Each time the *Write Data* button is pressed, the result data is written into the file and the *Number of Lines Written* field value will be increased by 1.
2.7 Pulse Rate Window

The CS5463 features a pulse-rate energy output. The CDB5463U has the capability to demonstrate the functionality of this output in the Pulse Rate Output Window. See Figure 11. The Pulse Rate Output Window can be accessed by pressing <F5>, or by pulling down the Menu menu, and selecting the Pulse Rate Window item.

![Pulse Rate Output Window](image)

**Figure 11. Pulse Rate Output Window**

2.7.1 Integration Seconds

This field allows the user to select the length of time over which pulses will be collected. Because there is a time delay (2x N / OWR) from start conversion to pulse output, the Integration Seconds field is normally set to a delay longer than the actual pulsing period.

2.7.2 Periods To Average

This field allows the user to average a number of integration periods.

2.7.3 Start Button

When the Start button is pressed, the CDB5463U will capture pulse rate data according to the values in the Integration Seconds and Periods to Average fields. After each integration period, the Pulse Count and Frequency columns will be updated. The Average Frequency and Standard Deviation columns will only be updated after all the integrations have been collected. The software stops collecting data when the user presses the Stop button, or when the data collection is finished. Due to speed limitations of the onboard microcontroller, some higher pulse rates cannot be accurately collected.
2.8 Data Collection Window

The *Data Collection Window* (Figure 12) allows the user to collect sample sets of data from the CS5463 and analyze them using time domain, FFT, and histogram plots. The *Data Collection Window* can be accessed by pulling down the *Menu* menu, and selecting the *Data Collection Window* item, or by pressing <F6>.

![Data Collection Window](image)

*Figure 12. Data Collection Window*

2.8.1 *Time Domain / FFT/ Histogram Selector*

This menu selects the type of data processing to perform on the collected data and display in the plot area. Refer to the Analyzing Data section for more information.

2.8.2 *Config Button*

This button will bring up the *Configuration* window, in which the user can modify the data collection specifications. Refer to the Configuration Window section in this document for more information.

2.8.3 *Collect Button*

This button will collect data from the part, to be analyzed in the plot area. See the Collecting Data Sets section for more information.

2.8.4 *Output Button*

This button will bring up a window in which the user can output the data to a file for later use, print out a plot, or print out the entire screen. When saving data, only the data channel being displayed on the plot will be saved to a file.
2.8.5  **Zoom Button**
This button allows the user to zoom in on the plot by selecting two points in the plot area. Press the *Restore* button to return to the normal data plot, or press the *Zoom* button again to zoom in even further.

2.8.6  **Channel Select Button**
After data collection, the two buttons labeled as “No Data” will be replaced with *Current* and *Voltage* buttons, allowing the user to choose the appropriate channel for display. In the time domain mode, an additional *Overlay* button will be present which allows the user to display all the channels on the same plot.

2.8.7  **Configuration Window**
The *Configuration* window allows the user to set up the data collection and analysis parameters.

![Configuration Window](image)

*Figure 13. Configuration Window*

2.8.7.1  **Number of Samples**
This field allows the user to select the number of samples to collect, between 16 and 32768.

2.8.7.2  **Average**
When performing FFT analyses, this field determines the number of FFTs to average. FFTs will be collected and averaged when the *Collect* button is pressed.

2.8.7.3  **FFT Window**
This field allows the user to select the type of windowing algorithm for FFT processing. Windowing algorithms include the *Blackman*, *Blackman-Harris*, *Hanning*, 5-term *Hodie*, and 7-term *Hodie*. The 5-term Hodie and 7-term Hodie are windowing algorithms developed at Crystal Semiconductor.
2.8.7.4  **Histogram Bin Width**

This field determines the "bin width" when plotting histograms of the collected data. Each vertical bar in the histogram plot will contain the number of output codes entered in this field. Increasing this number may allow the user to view histograms with larger input ranges.

2.8.7.5  **Data to Collect**

These two check boxes allow the user to select the data types that will be collected and returned to the PC for processing.

2.8.7.6  **Cycle Count**

The value in the *Cycle Count* field will be written to the Cycle Count register in the CS5463. The Cycle Count register determines the length of one computation cycle. The Cycle Count value should be selected appropriately according to the *Data to Collect* setting. For example, if the *Data to Collect* is instantaneous current, voltage, or power it is better to set *Cycle Count* to 1.

2.8.7.7  **Accept Button**

When this button is pressed, the current settings will be saved, and the user will return to the *Data Collection Window*.

2.8.8  **Collecting Data Sets**

To collect a sample data set:

1. In the *Data Collection Window*, press the *Config* button to bring up the *Configuration* window and view the current settings.
2. Select the appropriate settings from the available options (see the Configuration Window section) and press the *Accept* button.
3. The *Data Collection Window* should still be visible. Press the *Collect* button to begin collecting data.
4. Once the data has been collected, it can be analyzed, printed, or saved to disk.

2.8.9  **Retrieving Saved Data From a File**

The CDB5463U software allows the user to save data to a file, and retrieve it later when needed. To load a previously saved file:

1. Pull down the *Setup* menu and select the *Disk* menu item. A file menu will appear.
2. Find the data file in the list and select it. Press the *Select* button to return.
3. Go to the *Data Collection Window*, and press the *Collect* button.
4. The data from the file should appear on the screen. To select a different file, repeat the procedure.

2.8.10  **Analyzing Data**

The evaluation software provides three types of analysis tests: *Time Domain*, *Frequency Domain*, and *Histogram*. The time domain analysis processes acquired conversions to produce a plot of magnitude versus conversion sample number. The frequency domain analysis processes acquired conversions to produce a plot of magnitude versus frequency using the Fast-Fourier transform (results up to Fs/2 are calculated and plotted). Also statistical noise calculations are calculated and displayed. The histogram
analysis processes acquired conversions to produce a histogram plot. Statistical noise calculations are also calculated and displayed.

2.8.11 Histogram Information

The following is a description of the indicators associated with histogram analysis. Histograms can be plotted in the Data Collection Window by setting the analysis type pull-down menu to Histogram.

![Histogram Analysis](image)

**Figure 14. Histogram Analysis**

2.8.11.1 BIN

Displays the x-axis value of the cursor on the histogram.

2.8.11.2 MAGNITUDE

Displays the y-axis value of the cursor on the histogram.

2.8.11.3 MEAN

Indicates the mean of the data sample set. The mean is calculated using the following formula:

\[
\text{Mean} = \frac{\sum_{i=0}^{n-1} X_i}{n}
\]
2.8.11.4 STD_DEV
Indicates the standard deviation of the collected data set. The standard deviation is calculated using the following formula:

\[
\text{STDDEV} = \sqrt{\frac{\sum_{i=0}^{n-1} (X_i - \text{MEAN})^2}{n}}
\]

2.8.11.5 VARIANCE
Indicates for the variance of the current data set. The variance is calculated using the following formula:

\[
\text{VARIANCE} = \frac{\sum_{i=0}^{n-1} (X_i - \text{MEAN})^2}{n}
\]

2.8.11.6 MAXIMUM
Indicates the maximum value of the collected data set.

2.8.11.7 MINIMUM
Indicates the minimum value of the collected data set.
2.8.12 Frequency Domain Information

The following describe the indicators associated with FFT (Fast Fourier Transform) analysis. FFT data can be plotted in the Data Collection Window by setting the analysis type selector to FFT (Figure 15).

![Figure 15. FFT Analysis](image)

2.8.12.1 FREQUENCY
Displays the x-axis value of the cursor on the FFT display.

2.8.12.2 MAGNITUDE
Displays the y-axis value of the cursor on the FFT display.

2.8.12.3 S/PN
Indicates the signal-to-peak noise ratio (decibels).

2.8.12.4 SINAD
Indicates for the signal-plus-noise-plus-distortion to noise-plus-distortion ratio (decibels).

2.8.12.5 S/D
Indicates for the signal-to-distortion ratio, 4 harmonics are used in the calculations (decibels).

2.8.12.6 SNR
Indicates for the signal-to-noise ratio, first 4 harmonics are not included (decibels).
2.8.12.7 FS-Pdb
Indicates for the full-scale to signal Ratio (decibels).

2.8.12.8 Time Domain Information
The following controls and indicators are associated with time domain analysis. Time domain data can be plotted in the Data Collection Window by setting the analysis type selector to Time Domain (Figure 16).

Figure 16. Time Domain Analysis

2.8.12.9 COUNT
Displays current x-position of the cursor on the time domain display.

2.8.12.10 MAGNITUDE
Displays current y-position of the cursor on the time domain display.

2.8.12.11 MAXIMUM
Indicates for the maximum value of the collected data set.

2.8.12.12 MINIMUM
Indicates for the minimum value of the collected data set.
2.9 EEPROM Window

CDB5463U has an "Auto-Boot" demo feature that uses the on-board serial EEPROM, so that the CDB5463U can operate independently without being connected to a PC. CDB5463U GUI software also provides an EEPROM Window for reading & writing the serial EEPROM (Figure 17).

![Figure 17. EEPROM Window](image)

2.9.1 Bytes to Read/Write

The Bytes to Read/Write field allows the user to define the number of bytes to read or write.

2.9.2 Read EEPROM

First input the number of bytes to read in the Bytes to Read/Write field. After pressing the Read button, that number of bytes starting from the address 0x00 will be read from EEPROM and displayed in the EEPROM table in hexadecimal format.

2.9.3 Write EEPROM

Input the number of bytes to write in the Bytes to Read/Write field and input the hexadecimal byte values in the EEPROM table starting from address 0x00. After pressing the Write button, the bytes in the EEPROM table will be written to the EEPROM.
2.10 Debug Panel

The *Debug* panel provides the user a way to access CS5463 registers and send commands to CS5463 directly (Figure 18). Remember that the correct register page must be selected before accessing a register location. Refer to 5.15 in CS5463 data sheet for more details.

![Debug Panel](image)

*Figure 18. Debug Panel*
## APPENDIX A. BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Item</th>
<th>Cirrus P/N</th>
<th>Rev</th>
<th>Description</th>
<th>Qty</th>
<th>Reference Designator</th>
<th>MFG</th>
<th>MFG P/N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001-06872-Z1</td>
<td>A</td>
<td>CAP 0.1uF ±10% 50V NPb X7R 1206</td>
<td>50</td>
<td>C1</td>
<td>KEMET</td>
<td>C1206C104K5RAC2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>001-02779-01</td>
<td>A</td>
<td>CAP 22pF</td>
<td>50</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>110-00041-01</td>
<td>A</td>
<td>CON RA USB BLK 1 J2 AMP</td>
<td>1</td>
<td>J3</td>
<td>JOHNSON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>111-0102-001</td>
<td></td>
<td>REQUIRES WIRE, 1.5L X 0.25T X 0.25T TYPE E 24/19 BLU</td>
<td>1000</td>
<td>J4</td>
<td>SQUIRES ELEC. INC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>110-00008-01</td>
<td>A</td>
<td>CON BPOST 2&quot; SILV NYLON INS BLK 1 J4 JOHNSON</td>
<td>1</td>
<td>J4</td>
<td>JOHNSON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>115-00016-01</td>
<td>A</td>
<td>HDR 3x2 MLE .1&quot;CTR .062BD S GLD 6 J8 J9 J17 J22 J24 J26 SAMTEC TSW-103-07-G-D17</td>
<td>1</td>
<td>J16</td>
<td>SAMTEC</td>
<td>TSW-103-07-G-D17</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>115-00014-01</td>
<td>A</td>
<td>HDR 2x1 MLE .1&quot;CTR .062BD S GLD 1 J1</td>
<td>1</td>
<td>J12</td>
<td>SAMTEC</td>
<td>TSW-102-07-G-D19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>110-00056-01</td>
<td>A</td>
<td>CON TERM BLOCK 2 POS 5mm C/C BLUE 1 J14</td>
<td>1</td>
<td>J14</td>
<td>ON-SHORE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>110-00055-01</td>
<td>A</td>
<td>CON TERM BLOCK 4 POS 5mm C/C BLUE 2 J23 J27</td>
<td>2</td>
<td>J23 J27</td>
<td>OST ED 100/4DS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>115-00009-01</td>
<td>A</td>
<td>HDR 3x1 ML .1&quot;CTR 062BD ST GLD TH 1 J25 SAMTEC TSW-103-07-G-S22</td>
<td>1</td>
<td>J25</td>
<td>SAMTEC</td>
<td>TSW-103-07-G-S22</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>115-00031-01</td>
<td>A</td>
<td>HDR 11x2 MLE .1&quot;CTR S GLD 1 J40 SAMTEC TSW-111-07-G-D23</td>
<td>1</td>
<td>J40</td>
<td>SAMTEC</td>
<td>TSW-111-07-G-D23</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>020-01848-01</td>
<td>A</td>
<td>RES 2k OHM 1/8W ±1% 0805 FILM 12 R2 R3 R6 R7 R8 R14 R15 R16 R29 R36</td>
<td>1</td>
<td>R2 R3 R6 R7 R8 R14 R15 R16 R29 R36</td>
<td>DALE CRCW08052001F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>020-01588-01</td>
<td>A</td>
<td>RES 10 OHM 1/8W ±1% 0805 FILM 1 R4 DALE CRCW080510R0F</td>
<td>1</td>
<td>R4</td>
<td>DALE CRCW080510R0F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>020-01816-01</td>
<td>A</td>
<td>RES 1k OHM 1/8W ±1% 0805 FILM 5 R5 R11 R12 R13 R18 DALE CRCW08051001F</td>
<td>1</td>
<td>R5 R11 R12 R13 R18</td>
<td>DALE CRCW08051001F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>020-01930-01</td>
<td>A</td>
<td>RES 10k OHM 1/8W ±1% 0805 FILM</td>
<td>2</td>
<td>R19 R20</td>
<td>DALE CRCW08056041F</td>
<td>DO NOT POPULATE</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>021-00759-01</td>
<td>A</td>
<td>RES 1k OHM 1/3W ±5% 1210 FILM 4 R23 R24 R26 R28 DALE CRCW1210102J</td>
<td>1</td>
<td>R23 R24 R26 R28</td>
<td>DALE CRCW1210102J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>P/N</td>
<td>Description</td>
<td>Qty</td>
<td>Reference Designator</td>
<td>MFG</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------------</td>
<td>-----</td>
<td>----------------------</td>
<td>---------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>020-0355-01</td>
<td>RES 4.7 OHM 1/3W ±1% 1206 FILM</td>
<td>1</td>
<td>R25</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>020-0379-01</td>
<td>RES 1210 OHM 1/3W ±1% 1206 FILM</td>
<td>4</td>
<td>R30 R31 R32 R33</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>020-0359-01</td>
<td>RES 1210 OHM 1/3W ±1% 1206 FILM</td>
<td>1</td>
<td>R55</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>020-0274-01</td>
<td>RES 1210 OHM 1/3W ±1% 1206 FILM</td>
<td>1</td>
<td>R37</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>020-01473-01</td>
<td>RES 12.1k OHM 1/3W ±1% 0603 FILM</td>
<td>12</td>
<td>R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>020-0272-01</td>
<td>RES 0.125uH 1/3W ±1% 1206 FILM</td>
<td>1</td>
<td>R54</td>
<td>DALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>300-00002-01</td>
<td>SWT.01 TACT WEBO</td>
<td>1</td>
<td>S1</td>
<td>CAK</td>
<td>PT56457530 INSTALL AFTER WASH PROCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>110-00045-01</td>
<td>CON TEST PT.1 1C TIN PLATE BLK</td>
<td>16</td>
<td>TP1 TP2 TP3 TP4 TP11 TP10 TP12 TP20 TP21 TP22 TP23 TP24 TP25 TP26 TP27 TP30</td>
<td>NE1501</td>
<td>5001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>062-0124-01</td>
<td>IC PG 128 BIT SER EPPROM SOT23-3</td>
<td>1</td>
<td>U1</td>
<td>MICROCHIP</td>
<td>24LC00-I/OT NOT PROGRAMMED BEFORE ASSEMBLED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>061-0250-01</td>
<td>IC DVI LOW V BUPLDRVR S OPEN DRAIN</td>
<td>1</td>
<td>U2</td>
<td>FAIRCHILD SEMICONDUCTOR</td>
<td>7LCA760WM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>062-0079-01</td>
<td>IC PG 128BIT 16K FLASH MCU LT8032</td>
<td>1</td>
<td>U3</td>
<td>CYGAN</td>
<td>CR051F320 NOT PROGRAMMED BEFORE ASSEMBLED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>060-0061-01</td>
<td>IC LNR PRECISION V REF 2.5V SO8</td>
<td>1</td>
<td>U4</td>
<td>LINEAR TECH</td>
<td>7T019C5R2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>061-0119-01</td>
<td>IC LOG. UHS TINY DUAL BUFLC70-6</td>
<td>1</td>
<td>U5</td>
<td>FAIRCHILD SEMICONDUCTOR</td>
<td>NCTW207PSX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>065-00162-01</td>
<td>IC CRUS DATAENERGY MON NPN SSOP24</td>
<td>1</td>
<td>U6</td>
<td>CRUSLOGIC</td>
<td>CS5463-92ZC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>061-00002-01</td>
<td>IC LOG INV 5P UHS TINY SO723</td>
<td>1</td>
<td>U8</td>
<td>FAIRCHILD SEMICONDUCTOR</td>
<td>NC78204M5X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>061-00219-01</td>
<td>IC LOG UHS TINY ANALOG SWT 6P SC70</td>
<td>2</td>
<td>U9 U11</td>
<td>FAIRCHILD SEMICONDUCTOR</td>
<td>NC78317IPX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>062-0122-01</td>
<td>IC PG 128 BIT SER EPPROM SOT23-3</td>
<td>1</td>
<td>U10</td>
<td>ATMEC</td>
<td>AT25040AT-1051-2.7 NOT PROGRAMMED BEFORE ASSEMBLED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>135-00017-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>1</td>
<td>U62</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>135-00010-01</td>
<td>SMT FINISH CONTACT FOR SSOP24</td>
<td>0</td>
<td>U63</td>
<td>MOLIX</td>
<td>M011615-1020-1 INSTALL SHUNTS PER ASSY DWG 603-00176-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
- **S1:** C&K PTS645TL50 INSTALL AFTER WASH PROCESS
- **M1:** MICROCHIP 24LC00-I/OT NOT PROGRAMMED BEFORE ASSEMBLED
- **M2:** FAIRCHILD SEMICONDUCTOR 7LCA760WM
- **M3:** CYGAN CR051F320 NOT PROGRAMMED BEFORE ASSEMBLED
- **M4:** LINEAR TECH 7T019C5R2.5
- **M5:** FAIRCHILD SEMICONDUCTOR NCTW207PSX
- **M6:** CIRRUSLOGIC CS5463-92ZC
- **M7:** FAIRCHILD SEMICONDUCTOR NC78204M5X
- **M8:** FAIRCHILD SEMICONDUCTOR NC78317IPX
- **M9:** ATMEC AT25040AT-1051-2.7 NOT PROGRAMMED BEFORE ASSEMBLED
- **M10:** SQUARILS L-15X.25TX.25 TYP_E WIRE FERRITE INSERT WITH BINDER POSTS
Figure 19. Schematic - Analog Inputs

1. All resistor values are in ohms.

Notes: Unless otherwise specified.
Figure 20. Schematic - CS5463 & Socket
Figure 22. Schematic - Power Supplies
Figure 25. Bottom Routing
Figure 26. Bottom Silkscreen
### REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB1</td>
<td>SEP 2007</td>
<td>Initial Release.</td>
</tr>
<tr>
<td>DB2</td>
<td>OCT 2007</td>
<td>Minor correction to List of Figures.</td>
</tr>
</tbody>
</table>

### Contacting Cirrus Logic Support

For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to [www.cirrus.com](http://www.cirrus.com).

### IMPORTANT NOTICE

Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). Cirrus products are not designed, authorized or warranted for use in aircraft systems, military applications, products surgically implanted into the body, automotive safety or security devices, life support products or other critical applications. Inclusion of Cirrus products in such applications is understood to be fully at the customer's risk and Cirrus disclaims and makes no warranty, express, statutory or implied, including the implied warranties of merchantability and fitness for particular purpose, with regard to any Cirrus product that is used in such a manner. If the customer or the customer's customer uses or permits the use of Cirrus products in critical applications, customer agrees, by such use, to fully indemnify Cirrus, its officers, directors, employees, distributors and other agents from any and all liability, including attorneys' fees and costs, that may result from or arise in connection with these uses.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

LabWindows and CVI are registered trademarks of National Instruments, Inc.
Windows, Windows 2000, and Windows XP are trademarks or registered trademarks of Microsoft Corporation.
PADS and PowerLogic are trademarks of Mentor Graphics Corporation.